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Formal Concept Analysis

Formal Concept Analysis

Formal Concept Analysis (FCA) has taken its origin as an at-
tempt to restructure mathematics, e.g., lattice theory.

Since then, FCA has been developed as a subfield of applied
mathematics, based in mathematization of concept hierarchies.

The aim of FCA is to support the rational communication of
humans by mathematically developing appropriate conceptual
structures, which can be logically activated.
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Formal Concept Analysis

Formal contexts

One of the main building blocks of FCA provide formal contexts.

Definition 1

A formal context is a triple (G ,M, I ), which comprises a set of
objects G , a set of attributes M, and a binary incidence relation I
between G and M, where g I m means “object g has attribute m”.
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Formal Concept Analysis

Formal context morphisms

There exist at least three (different) ways of defining a morphism
between two formal contexts (G1,M1, I1) and (G2,M2, I2).

1 The theory of FCA employs pairs of maps G1
α−→ G2, M1

β−→ M2
such that g I1m iff α(g) I2 β(m) for every g ∈ G1, m ∈ M1.

2 The theory of Chu spaces uses pairs of maps G1
α−→ G2, M2

β−→
M1 such that g I1 β(m) iff α(g) I2m for every g ∈ G1, m ∈ M2.
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Formal Concept Analysis

Formal context morphisms

3 The theory of Galois connections relies on the pairs of maps

P(G1)
α−→ P(G2), P(M2)

β−→ P(M1), where P(X ) stands for
the powerset of X , such that the diagrams

P(G1)
H1
��

α //P(G2)
H2
��

P(M1) P(M2)
β

oo

and P(M1)
K1
��

P(M2)
βoo

K2
��

P(G1) α
//P(G2)

commute, where Hj(S) = {m ∈ Mj | s Ij m for every s ∈ S} and
Kj(T ) = {g ∈ Gj | g Ij t for every t ∈ T} (Birkhoff operators).
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Lattice-valued Formal Concept Analysis

Lattice-valued formal contexts

J. T. Denniston, A. Melton, and S. E. Rodabaugh compared
the approaches of items (2) and (3) by considering their respec-
tive categories of lattice-valued formal contexts (in the sense of
R. Bělohlávek) over a fixed commutative quantale Q, and con-
structing an embedding of each category into its counterparts.

They finally arrived at the conclusion that the two viewpoints
on formal context morphisms were not categorically isomorphic.
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Lattice-valued Formal Concept Analysis

Lattice-valued formal contexts

This talk compares all three of the above-mentioned approaches
to morphisms in the framework of lattice-valued formal contexts
over a category of not necessarily commutative quantales.

We construct a number of embeddings between their respective
categories of formal contexts, showing that the approach of
item (3) falls out of the FCA setting in the lattice-valued case.
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Quantales∨
-semilattices

Definition 2

CSLat(
∨
) is the variety of

∨
-semilattices, i.e., partially ordered sets

(posets), which have arbitrary joins.

Every
∨

-semilattice homomorphism A1
ϕ−→ A2 has the upper ad-

joint map A2
ϕ`
−−→ A1 given by ϕ`(a2) =

∨
{a1 ∈ A1 |ϕ(a1) 6 a2}.
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Quantales

Quantales

Definition 3
1 Quant is the variety of quantales, i.e., triples (Q,

∨
,⊗), where

(Q,
∨
) is a

∨
-semilattice;

(Q,⊗) is a semigroup;
⊗ distributes across

∨
from both sides.

2 UQuant is the variety of unital quantales, i.e., quantales Q,
which have an element Q such that (Q,⊗, Q) is a monoid.

A quantale Q has two residuations, which are given by q1 −→l q2 =∨
{q ∈ Q | q⊗ q1 6 q2} and q1 −→r q2 =

∨
{q ∈ Q | q1⊗ q 6 q2}.
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Powerset operators

Crisp forward powerset operator

Definition 4

Given a map X1
f−→ X2, the forward powerset operator w.r.t. f is the

map P(X1)
f→−−→ P(X2), which is defined by f→(S) = {f (s) | s ∈ S}.
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Powerset operators

Lattice-valued forward powerset operators I

Theorem 5
1 Given a variety L, which extends CSLat(

∨
), every subcategory

S of L provides a functor Set × S (−)→−−−→ CSLat(
∨
), which

is defined by ((X1, L1)
(f ,ϕ)−−−→ (X2, L2))→ = LX11

(f ,ϕ)→−−−−→ LX22 ,
where ((f , ϕ)→(α))(x2) = ϕ(

∨
f (x1)=x2 α(x1)).

2 Let L be a variety, which extends CSLat(
∨
), and let S be a

subcategory of Lop such that for every S-morphism L1
ϕ−→ L2,

the map L1
ϕop`−−−→ L2 is

∨
-preserving. Then there exists a

functor Set× S (−)`99K

−−−−→ CSLat(
∨
) defined by ((X1, L1)

(f ,ϕ)−−−→

(X2, L2))`99K = LX11
(f ,ϕ)`99K

−−−−−→ LX22 , where ((f , ϕ)`99K(α))(x2) =
ϕop`(

∨
f (x1)=x2 α(x1)).
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Powerset operators

Lattice-valued forward powerset operators II

Theorem 6
1 Given a variety L, which extends CSLat(

∨
), every subcategory

S of Lop provides a functor Setop × S (−)→o−−−−→ (CSLat(
∨
))op

with ((X1, L1)
(f ,ϕ)−−−→ (X2, L2))→o = LX11

((f ,ϕ)→o)op−−−−−−−→ LX22 , where
((f , ϕ)→o(α))(x1) = ϕop(

∨
f op(x2)=x1 α(x2)).

2 Let L be a variety, which extends CSLat(
∨
), and let S be

a subcategory of L such that for every S-morphism L1
ϕ−→

L2, the map L2
ϕ`
−−→ L1 is

∨
-preserving. Then there ex-

ists a functor Setop × S (−)`99Ko

−−−−−→ (CSLat(
∨
))op defined by

((X1, L1)
(f ,ϕ)−−−→ (X2, L2))`99Ko = LX11

((f ,ϕ)`99Ko)
op

−−−−−−−−→ LX22 , where
((f , ϕ)`99Ko(α))(x1) = ϕ`(

∨
f op(x2)=x1 α(x2)).

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 14/37



Introduction Preliminaries Formal contexts Properties & relationships Conclusion References

Galois connections

Galois connections

Definition 7

A tuple ((X1,6), f , g , (X2, 6)) is an order-reversing Galois connec-

tion provided that (X1,6), (X2,6) are posets, and X1
f // X2
g
oo are

maps with x1 6 g(x2) iff x2 6 f (x1) for every x1 ∈ X1, x2 ∈ X2.
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Lattice-valued formal contexts

Formal contexts as Chu spaces

Definition 8

Let L be a variety, which extends Quant, and let S be a subcategory
of Lop. S-FCC is the category, which comprises the following data.

Objects: tuples K = (G ,M, L, I ) ((lattice-valued) formal contexts),
where G is the set of context objects, M is the set of context

attributes, L is an S-object, and G ×M I−→ L is a map, which is
called the context incidence relation.

Morphisms: K1
f−→ K2 ((lattice-valued) formal context morphisms)

are triples (G1,M1, L1)
f=(α,β,ϕ)−−−−−−→ (G2,M2, L2) in Set× Setop × S

with I1(g , βop(m)) = ϕop ◦ I2(α(g),m) for every g ∈ G1, m ∈ M2.

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 16/37



Introduction Preliminaries Formal contexts Properties & relationships Conclusion References

Lattice-valued formal contexts

Modified formal contexts as Chu spaces

Definition 9

Let L be a variety, which extends Quant, and let S be a subcategory
of L. S-FCCm is the category, which comprises the following data.

Objects: (lattice-valued) formal contexts.

Morphisms: K1
f−→ K2 are triples (G1,M1, L1)

f=(α,β,ϕ)−−−−−−→
(G2,M2, L2) in Set×Setop×S with ϕ◦I1(g , βop(m)) = I2(α(g),m)
for every g ∈ G1, m ∈ M2.
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Lattice-valued formal contexts

Formal contexts of B. Ganter and R. Wille

Definition 10

Let L be a variety, which extends Quant, and let S be a subcategory
of Lop. S-FCGW is the category, which comprises the following data.

Objects: (lattice-valued) formal contexts.

Morphisms: K1
f−→ K2 are triples (G1,M1, L1)

f=(α,β,ϕ)−−−−−−→
(G2,M2, L2) in Set×Set×S with I1(g ,m) = ϕop ◦ I2(α(g), β(m))
for every g ∈ G1, m ∈ M1.
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Lattice-valued formal contexts

Modified formal contexts of B. Ganter and R. Wille
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Lattice-valued formal contexts

Lattice-valued Birkhoff operators

Definition 12

Every lattice-valued formal context K provides the following (lattice-
valued) Birkhoff operators:

1 LG H−→ LM given by (H(s))(m) =
∧
g∈G (s(g)→l I (g ,m));

2 LM K−→ LG given by (K (t))(g) =
∧
m∈M(t(m)→r I (g ,m)).

Theorem 13

For every lattice-valued context K, (LG ,H,K , LM) is an order-
reversing Galois connection.
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Lattice-valued formal contexts

Crisp Birkhoff operators

Example 14

Every crisp context K provides the maps

1 P(G )
H−→ P(M), H(S) = {m ∈ M | s I m for every s ∈ S};

2 P(M)
K−→ P(G ), K (T ) = {g ∈ G | g I t for every t ∈ T};

which are the classical Birkhoff operators of a binary relation.
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Lattice-valued formal contexts

Formal contexts of J. T. Denniston et al.

Definition 15

Given a variety L, which extends Quant, and a subcategory S of
L, S-FCDMR is the category, concrete over the product category
Set× Setop, which comprises the following data.

Objects: lattice-valued formal contexts K with L an object of S.

Morphisms: K1
f=(α,β)−−−−−→ K2 are Set × Setop-morphisms

(LG11 , L
M1
1 )

(α,β)−−−→ (LG22 , L
M2
2 ), making the next diagrams commute

LG11
H1
��

α //LG22
H2
��

LM11 LM22βop
oo

LM11
K1
��

LM22
βopoo

K2
��

LG11 α
//LG22 .
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Formal contexts as Galois connections

Relations versus Birkhoff operators

There is a one-to-one correspondence between relations I ⊆
G×M and order-reversing Galois connections on (P(G ),P(M)).

What about the lattice-valued case?

Definition 16

Given a
∨

-semilattice L and a set X , every S ⊆ X and every a ∈ L

provide the map X
χaS−→ L, which is defined by

χaS(x) =

{
a, x ∈ S

⊥L, otherwise.

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 23/37
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Formal contexts as Galois connections

Lattice-valued relations versus Birkhoff operators

Theorem 17

Let G , M be sets and let L be a unital quantale. For every order-
reversing Galois connection (LG , α, β, LM), equivalent are:

1 There exists a map G ×M I−→ L such that α = H and β = K .
2 For every g ∈ G , m ∈ M, a ∈ L, it follows that

(a) (α(χL
{g}))(m) = (β(χL

{m}))(g);
(b) (α(a⊗ χL

{g}))(m) = a→l (α(χL
{g}))(m);

(c) (β(χL
{m} ⊗ a))(g) = a→r (β(χL

{m}))(g).

3 For every g ∈ G , m ∈ M, a ∈ L, it follows that
(a) (α(a⊗ χL

{g}))(m) = a→l (β(χL
{m}))(g);

(b) (β(χL
{m} ⊗ a))(g) = a→r (α(χL

{g}))(m).
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Formal contexts as Galois connections

Consequences

Every map G × M I−→ L gives rise to an order-reversing Galois
connection, but the converse way needs additional requirements.

Counterexample

Let L be the unit interval I = ([0, 1],
∨
,∧, 1), and let both G and

M be singletons. One can assume that both IG and IM is I. The
order-reversing involution map I α−→ I, α(a) = 1− a is a part of the
order-reversing Galois connection (I, α, α, I). The condition of, e.g.,
Theorem 17(3)(a) gives α(a) = a→ α(1) for every a ∈ I. However,
for a = 1

2 , one obtains that α(12) =
1
2 6= 0 = 1

2 → 0 = 1
2 → α(1).
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Relationships between the categories of lattice-valued formal contexts

From S-FCC to S-FCDMR

Definition 18

S-FCC∗ is a subcategory of S-FCC , with the same objects, and

whose morphisms K1
f−→ K2 have surjective maps G1

α−→ G2,

M2
βop−−→ M1, and an S-isomorphism L1

ϕ−→ L2.

Let L extend UQuant. S-FCC∗∗ (resp. S-FCC∗•) is a full subcate-
gory of S-FCC∗ , whose objects K = (G ,M, L, I ) have non-empty
G (resp. M) and, moreover, L 6= ⊥L.

Theorem 19

There exists a functor S-FCC∗
HCD−−→ S-FCDMR , which is given by

HCD(K1
f−→ K2) = K1

((α,ϕ)`99K,((β,ϕ)→o)op)−−−−−−−−−−−−−−→ K2. Its restriction to
S-FCC∗∗ (resp. S-FCC∗•) is a (non-full) embedding.
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Relationships between the categories of lattice-valued formal contexts

From S-FCC to S-FCDMR

Definition 18
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α−→ G2,

M2
βop−−→ M1, and an S-isomorphism L1

ϕ−→ L2.
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G (resp. M) and, moreover, L 6= ⊥L.
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Relationships between the categories of lattice-valued formal contexts

From S-FCC
m to S-FCDMR

Definition 20

S-FCCm∗ is a subcategory of S-FCCm, with the same objects, and

whose morphisms K1
f−→ K2 have surjective maps G1

α−→ G2,

M2
βop−−→ M1, and an S-isomorphism L1

ϕ−→ L2.

Let L extend UQuant. S-FCCm∗∗ (resp. S-FCCm∗•) is a full
subcategory of S-FCCm∗, whose objects K = (G ,M, L, I ) have
non-empty G (resp. M) and, moreover, L 6= ⊥L.

Theorem 21

There exists a functor S-FCCm∗
HCmD−−−→ S-FCDMR , which is given by

HCmD(K1
f−→ K2) = K1

((α,ϕ)→,((β,ϕ)`99Ko)
op
)−−−−−−−−−−−−−−→ K2. Its restriction to

S-FCCm∗∗ (resp. S-FCCm∗•) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 27/37



Introduction Preliminaries Formal contexts Properties & relationships Conclusion References

Relationships between the categories of lattice-valued formal contexts

From S-FCC
m to S-FCDMR

Definition 20

S-FCCm∗ is a subcategory of S-FCCm, with the same objects, and

whose morphisms K1
f−→ K2 have surjective maps G1

α−→ G2,

M2
βop−−→ M1, and an S-isomorphism L1

ϕ−→ L2.

Let L extend UQuant. S-FCCm∗∗ (resp. S-FCCm∗•) is a full
subcategory of S-FCCm∗, whose objects K = (G ,M, L, I ) have
non-empty G (resp. M) and, moreover, L 6= ⊥L.

Theorem 21

There exists a functor S-FCCm∗
HCmD−−−→ S-FCDMR , which is given by

HCmD(K1
f−→ K2) = K1

((α,ϕ)→,((β,ϕ)`99Ko)
op
)−−−−−−−−−−−−−−→ K2. Its restriction to

S-FCCm∗∗ (resp. S-FCCm∗•) is a (non-full) embedding.

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 27/37



Introduction Preliminaries Formal contexts Properties & relationships Conclusion References

Relationships between the categories of lattice-valued formal contexts

Formal concepts, protoconcepts, and preconcepts

Definition 22

Let K be a lattice-valued formal context, and let s ∈ LG , t ∈ LM .
The pair (s, t) is called a

(lattice-valued) formal concept of K provided that H(s) = t
and K (t) = s;

(lattice-valued) formal protoconcept of K provided that K ◦
H(s) = K (t) (equivalently, H ◦ K (t) = H(s));

(lattice-valued) formal preconcept of K provided that s 6 K (t)
(equivalently, t 6 H(s)).
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Relationships between the categories of lattice-valued formal contexts

From S-FCDMR to S-FCC

Definition 23

Given an L-algebra L, L-FCDMRi is a subcategory of L-FCDMR ,

with the same objects, and whose morphisms K1
f−→ K2 have

injective maps LG1 α−→ LG2 , LM2
βop−−→ LM1 .

An L-algebra L is called quasi-strictly right-sided (qsrs-algebra)
provided that a 6 (>L →l a)⊗>L for every a ∈ L.

Theorem 24

There exists a functor L-FCDMRi

HiDC−−→ S-FCC , which is given by

Hi
DC (K1

f−→ K2) = (LG1 , LM1 , L, Î1)
(α,β,1L)−−−−−→ (LG2 , LM2 , L, Î2), where

Îj(s, t) = >L if (s, t) is a formal concept of Kj , and ⊥L otherwise.
If L is a qsrs-algebra, then Hi

DC is a (non-full) embedding.
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Relationships between the categories of lattice-valued formal contexts

From S-FCDMR to S-FCC

Definition 25

Given an L-algebra L, L-FCDMRrfp is a subcategory of L-FCDMR , with

the same objects, and whose morphisms K1
f−→ K2 have maps LG1 α−→

LG2 , LM2
βop−−→ LM1 such that K2 ◦ H2 ◦ α(s) = α(s) implies K1 ◦

H1(s) = s, and H1 ◦ K1 ◦ βop(t) = βop(t) implies H2 ◦ K2(t) = t,
for every s ∈ LG11 , t ∈ LM22 .

Theorem 26

There exists a functor L-FCDMRrfp
HrfpDC−−→ S-FCC , which is given by

HrfpDC (K1
f−→ K2) = (LG1 , LM1 , L, Î1)

(α,β,1L)−−−−−→ (LG2 , LM2 , L, Î2), where
Îj(s, t) = >L if (s, t) is a formal concept of Kj , and ⊥L otherwise.
If L is a qsrs-algebra, then the functor is a (non-full) embedding.

On morphisms of lattice-valued formal contexts Sergejs Solovjovs Masaryk University 30/37



Introduction Preliminaries Formal contexts Properties & relationships Conclusion References

Relationships between the categories of lattice-valued formal contexts

From S-FCDMR to S-FCC

Definition 25

Given an L-algebra L, L-FCDMRrfp is a subcategory of L-FCDMR , with

the same objects, and whose morphisms K1
f−→ K2 have maps LG1 α−→

LG2 , LM2
βop−−→ LM1 such that K2 ◦ H2 ◦ α(s) = α(s) implies K1 ◦

H1(s) = s, and H1 ◦ K1 ◦ βop(t) = βop(t) implies H2 ◦ K2(t) = t,
for every s ∈ LG11 , t ∈ LM22 .

Theorem 26

There exists a functor L-FCDMRrfp
HrfpDC−−→ S-FCC , which is given by

HrfpDC (K1
f−→ K2) = (LG1 , LM1 , L, Î1)
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Relationships between the categories of lattice-valued formal contexts

From S-FCDMR to S-FCC

Definition 27

Given an L-algebra L, L-FCDMRorp is a subcategory of L-FCDMR , with

the same objects, and whose morphisms K1
f−→ K2 have order-

preserving maps LG1 α−→ LG2 , LM2
βop−−→ LM1 .

Theorem 28

There exists a functor L-FCDMRorp
HorpDC−−→ S-FCC , which is given by

HorpDC (K1
f−→ K2) = (LG1 , LM1 , L, Î1)

(α,β,1L)−−−−−→ (LG2 , LM2 , L, Î2), where
Îj(s, t) = >L if (s, t) is a formal preconcept of Kj , and ⊥L otherwise.
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Relationships between the categories of lattice-valued formal contexts

From S-FCDMR to S-FCC

Theorem 29

There exists a functor L-FCDMR
HDC−−→ S-FCC , which is given by

HDC (K1
f−→ K2) = (LG1 , LM1 , L, Î1)

(α,β,1L)−−−−−→ (LG2 , LM2 , L, Î2), where
Îj(s, t) = >L if (s, t) is a formal protoconcept of Kj , and ⊥L other-
wise. If L is a qsrs-algebra, then HDC is a (non-full) embedding.
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Conclusion

Final remarks

This talk considered some approaches to morphisms of lattice-
valued formal contexts of Formal Context Analysis (FCA).

We constructed several categories, whose objects are lattice-
valued analogues of formal contexts of FCA, and whose mor-
phisms reflect the crisp setting of Chu spaces, the lattice-valued
setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh,
as well as the many-valued setting of B. Ganter and R. Wille.

We considered a number of functors between the categories of
formal contexts, embedding each of them into its counterparts.
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Open problem

FCA without relations

The difference between the settings of relations and Galois connec-
tions in the lattice-valued case, motivates the following problem.

Problem 30

Is it possible to build a lattice-valued approach to FCA, which is
based in order-reversing Galois connections on lattice-valued pow-
ersets, which are not generated by lattice-valued relations on their
respective sets of objects and their attributes?
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Thank you for your attention!
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