Free idempotent generated semigroups

Nik Ruškuc

nik@mcs.st-and.ac.uk

School of Mathematics and Statistics, University of St Andrews

Novi Sad, 6 June 2013

All of old. Nothing else ever. Ever tried. Ever failed. No matter. Try again.

(S. Beckett, Worstword Ho)

Free IG semigroups: idea

- ► To every semigroup S with idempotents E associate the free-est semigroup IG(E) in which idempotents have the same structure as in S.
- ▶ To every regular semigroup *S* with idempotents *E* associate the free-est regular semigroup RIG(*E*) in which idempotents have the same structure as in *S*.
- Structure = biorder.

Free IG semigroups: definition

E – the set of idempotents in a semigroup S.

$$\mathsf{IG}(E) := \langle E \mid e^2 = e \quad (e \in E),$$
$$e \cdot f = ef \ (\{e, f\} \cap \{ef, fe\} \neq \emptyset) \rangle.$$

Suppose now S is regular. $S(e, f) = \{h \in E : ehf = ef, fhe = h\} \neq \emptyset$ (sandwich sets).

$$\mathsf{RIG}(E) := \langle E \mid \mathsf{IG}, e \cdot h \cdot f = e \cdot f (e, f \in E, h \in S(e, f)) \rangle.$$

Example: V-semilattice

Let
$$S = \bigvee_{z}^{e} \int_{z}^{f}$$

Example: V-semilattice

Let
$$S = \bigvee_{z}^{e} \int_{z}^{f}$$

IG(S) = $\langle e, f, z | e^2 = e, f^2 = f, z^2 = z, ez = ze = fz = zf = z \rangle$:

Example: V-semilattice

Let
$$S = \bigvee_{z}^{e} f$$

$$IG(S) = \langle e, f, z | e^{2} = e, f^{2} = f, z^{2} = z, ez = ze = fz = zf = z \rangle:$$

$$e f$$

$$(ef)^{i}e (ef)^{i}$$

$$(fe)^{i} (fe)^{i}f$$

$$z$$

Example: V-semilattice

Let
$$S = \bigvee_{z}^{e} \int_{z}^{f} IG(S) = \langle e, f, z \mid e^{2} = e, f^{2} = f, z^{2} = z, ez = ze = fz = zf = z \rangle$$
:

$$\bigvee_{e} \int_{e} \int_{e} \int_{e} (ef)^{i} (fe)^{i} f$$

$$(fe)^{i} (fe)^{i} f$$

$$RIG = \langle e, f, z \mid IG, ef = fe = z \rangle = S.$$

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i, j, k, l \in \{1, 2\}) \rangle:$$

e_{11}	<i>e</i> ₁₂
e_{21}	<i>e</i> ₂₂

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}) \rangle:$$

<i>e</i> ₁₁	e_{12}
e_{21}	<i>e</i> ₂₂

$$\mathsf{IG}(S) = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}, \ i = k \ \text{or} \ j = l) \rangle$$
:

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}) \rangle:$$

$$\mathsf{IG}(S) = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}, \ i = k \text{ or } j = l) \rangle:$$

$(e_{11}e_{22})^i e_{11} (e_{12}e_{21})^i$	$(e_{12}e_{21})^i e_{12} \ (e_{11}e_{22})^i$
$(e_{21}e_{12})^i e_{21} (e_{22}e_{11})^i$	$(e_{22}e_{11})^i e_{22} (e_{21}e_{12})^i$

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}) \rangle:$$

$$\mathsf{IG}(S) = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}, \ i = k \text{ or } j = l) \rangle:$$

$(e_{11}e_{22})^i e_{11} (e_{12}e_{21})^i$	$(e_{12}e_{21})^i e_{12} \ (e_{11}e_{22})^i$
$(e_{21}e_{12})^i e_{21} (e_{22}e_{11})^i$	$(e_{22}e_{11})^i e_{22} (e_{21}e_{12})^i$

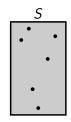
$$\operatorname{RIG}(S) = \operatorname{IG}(S).$$

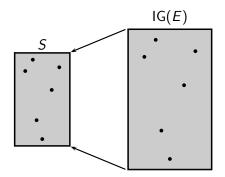
S, IG(E), RIG(E)

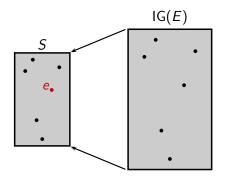
- The sets of idempotents isomorphic (as biordered sets).
- ► The *D*-class of an idempotent *e* has the same dimensions in all three.
- ► The group H_e in S is a homomorphic image of its counterparts in IG(E), RIG(E), which themselves are isomorphic.
- IG(E) may contain other, non-regular D-classes.

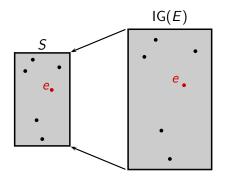
Question

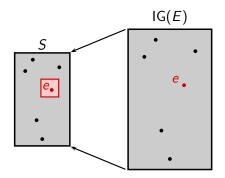
Describe maximal subgroups of IG(E) and RIG(E).

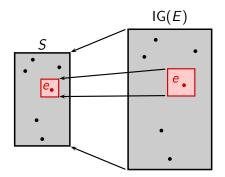


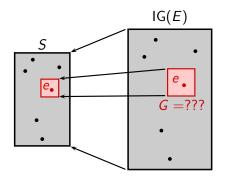




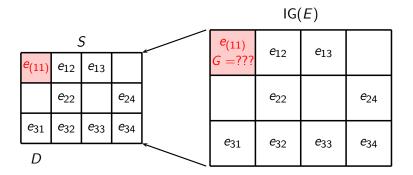








Setting the problem: zoom in



Generators

Fact

G is generated by a set in 1-1 correspondence with $D \cap E(S)$.

Generators

Fact

G is generated by a set in 1-1 correspondence with $D \cap E(S)$.

D				
e ₍₁₁₎	e ₁₂	e ₁₃		
	e ₂₂		e ₂₄	
e ₃₁	e ₃₂	e ₃₃	e ₃₄	

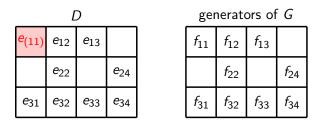
generators of G

<i>f</i> ₁₁	<i>f</i> ₁₂	<i>f</i> ₁₃	
	f ₂₂		f ₂₄
<i>f</i> ₃₁	f ₃₂	f ₃₃	f ₃₄

Generators

Fact

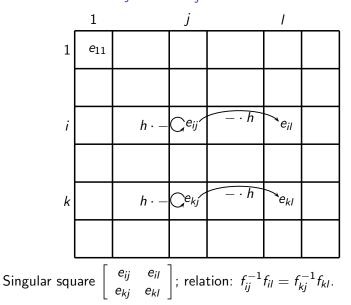
G is generated by a set in 1-1 correspondence with $D \cap E(S)$.



$$G = \langle f_{ij} \ (e_{ij} \in D \cap E) \ | ??? \rangle$$

Typical relations: $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$

 $\bullet h = h^2$



Presentation

Theorem (Nambooripad '79; Gray, NR '12)

The maximal subgroup G of $e \in E$ in IG(E) or RIG(E) is defined by the presentation:

- Proof: Reidemeister–Schreier followed by Tietze transformations.
- Two types of relations:
 - Initial conditions: declaring some generators equal to 1 or each other;
 - Main relations: one per singular square.
- All relations of length \leq 4.
- If no singular squares, the group is free.
- They have been conjectured to *always* be free.
- ▶ Brittenham, Margolis, Meakin '09 construct a 73-element semigroup such that IG(E) and RIG(E) have Z × Z as a maximal subgroup.

• What can be defined by relations $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$? • $\begin{bmatrix} 1 & b \\ a & c \end{bmatrix} \Rightarrow ab = c.$

• What can be defined by relations $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$?

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

But: Every semigroup can be defined by relations of the form ab = c.

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares . . .

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares . . .

$$\blacktriangleright \left[\begin{array}{cc} a & a \\ b & c \end{array} \right] \Rightarrow$$

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares ...

$$\bullet \left[\begin{array}{cc} a & a \\ b & c \end{array} \right] \Rightarrow b = c.$$

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares . . .

$$\begin{bmatrix} a & a \\ b & c \end{bmatrix} \Rightarrow b = c.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & a \end{bmatrix} \Rightarrow$$

$$\bullet \left[\begin{array}{cc} 1 & b \\ a & c \end{array} \right] \Rightarrow ab = c.$$

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares . . .

$$\begin{bmatrix} a & a \\ b & c \end{bmatrix} \Rightarrow b = c.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & a \end{bmatrix} \Rightarrow a = 1.$$

Results (1): Gray, NR '12

Theorem

Every (finite) group is a maximal subgroup of some free regular idempotent generated semigroup (over a finite semigroup).

Theorem

Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup.

Remark

Maximal subgroups of free idempotent generated semigroups arising from finite semigroups have to be finitely presented by Reidemeister–Schreier.

Remaining Question

Is every finitely presented group a maximal subgroup in some free idempotent generated semigroup over a finite regular semigroup?

Results (2): calculating the groups

Some or all maximal subgroups in IG(E(S)) have been calculated for the following S:

- Full matrix monoid over a finite field: Brittenham, Margolis, Meakin; Dolinka, Gray.
- Full and partial transformation monoids: Gray, NR; Dolinka.
- ▶ Endomorphism monoid of a free *G*-act: Gould, Yang.

Results (3): bands

Theorem (Dolinka)

For every left- or right seminormal band B, all maximal subgroups of IG(B) are free. For every variety V not contained in LSNB \cup RSNB there exists $B \in V$ such that IG(B) contains a non-free maximal subgroup.

Remaining Question

Which subgroups arise as maximal subgroups of IG(B), B a band?

Let's obtain

$$\langle a, b, c \mid ab = c, \ bc = a, \ ca = b \rangle$$

Let's obtain

$$\langle a, b, c \mid ab = c, bc = a, ca = b \rangle (= Q_8 = F(2,3))$$

Let's obtain

$$\langle a, b, c \mid ab = c, bc = a, ca = b \rangle (= Q_8 = F(2,3))$$

Let's obtain

$$\langle a, b, c \mid ab = c, bc = a, ca = b \rangle (= Q_8 = F(2,3))$$

Let's obtain

$$\langle a, b, c \mid ab = c, bc = a, ca = b \rangle (= Q_8 = F(2,3))$$

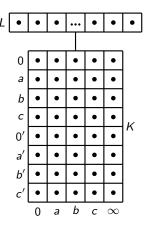
as a maximal subgroup of IG(B) for a band B.

•
$$I = \{0, a, b, c, 0', a', b', c'\};$$

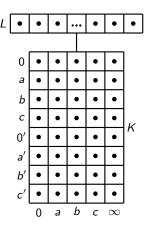
• $J = \{0, a, b, c, \infty\};$
• $T = T_I^* \times T_J;$
• the minimal ideal: $K = \{(\sigma, \tau) : \sigma, \tau \text{ constants}\};$

• K is an $I \times J$ rectangular band.

B = K ∪ L, where L is a left zero semigroup.

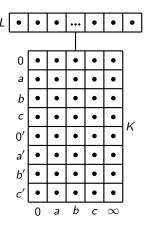


- B = K ∪ L, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:



- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:

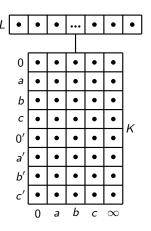
•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;



- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:

•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;

• ker(
$$\sigma$$
) = {{0, a, b, c}, {0', a', b', c'};

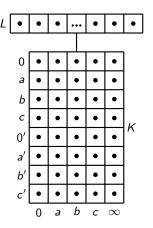


- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:

•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;

• ker(
$$\sigma$$
) =
{{0, a, b, c}, {0', a', b', c'}};

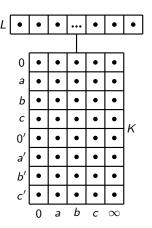
thus σ is determined by its image
 {x, y} transversing its kernel;



- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:

•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;

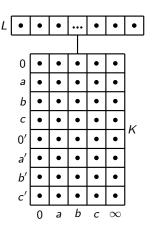
- ► ker(σ) = {{0, a, b, c}, {0', a', b', c'}};
- thus σ is determined by its image {x, y} transversing its kernel;
- $im(\tau) = \{0, a, b, c\};$



- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every $(\sigma, \tau) \in L$ satisfying:

•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;

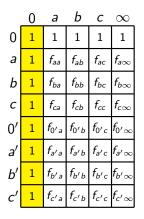
- ► ker(σ) = {{0, a, b, c}, {0', a', b', c'}};
- thus σ is determined by its image
 {x, y} transversing its kernel;
- $im(\tau) = \{0, a, b, c\};$
- thus τ is specified by $(\infty)\tau$.



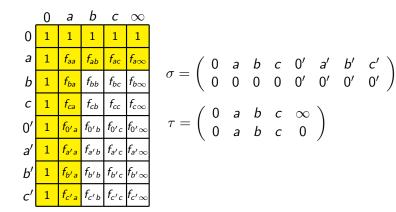
b а 0 С ∞ 0 f_{0a} f_{0b} f_{0c} f_{00} $f_{0\infty}$ а f_{a0} f_{aa} f_{ab} f_{ac} $f_{a\infty}$ b f_{ba} f_{bb} $f_{b\infty}$ f_{b0} f_{bc} С f_{c0} f_{ca} f_{cb} f_{cc} $f_{c\infty}$ f_{0'a} 0 $f_{0'b} | f_{0'c} | f_{0'\infty}$ $f_{0'0}$ $f_{a'a} f_{a'b} f_{a'c} f_{a'\infty}$ a $f_{a'0}$ $f_{b'0} f_{b'a} f_{b'b} f_{b'c} f_{b'\infty}$ b $f_{c'a} \mid f_{c'b} \mid f_{c'c}$ С c'0 $t_{c'} \sim$

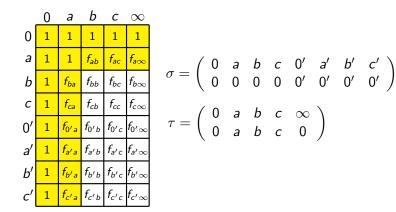
	0	а	b	С	∞
0		1			
а	f _{a0}	f _{aa}	f _{ab}	f _{ac}	$f_{a\infty}$
b	f_{b0}	f _{ba}	f _{bb}	f _{bc}	$f_{b\infty}$
с	f_{c0}	f _{ca}	f _{cb}	f _{cc}	$f_{c\infty}$
0′	<i>f</i> _{0′0}	$f_{0'a}$	f _{0′b}	f _{0'c}	$f_{0'\infty}$
a'	f _{a'0}	$f_{a'a}$	f _{a' b}	f _{a'c}	$f_{a'\infty}$
b'	$f_{b'0}$	$f_{b^{\prime}a}$	$f_{b'b}$	$f_{b'c}$	$f_{b'\infty}$
c′	$f_{c'0}$	$f_{c'a}$	$f_{c'b}$	$f_{c'c}$	$f_{c'\infty}$

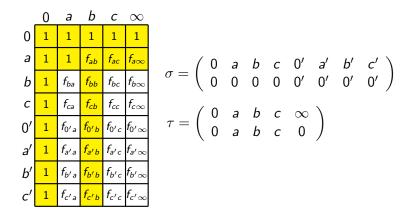
Initial relations

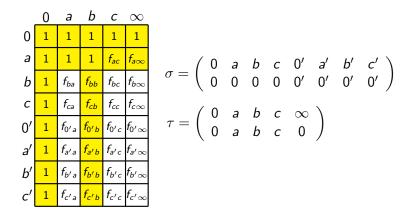


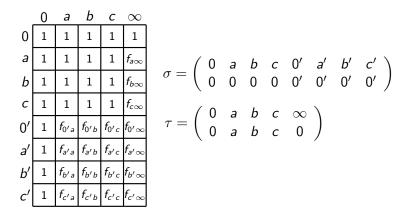
Initial relations

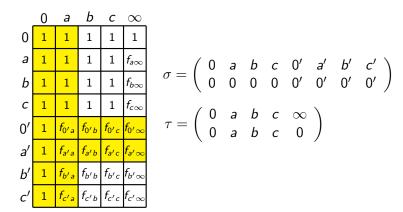


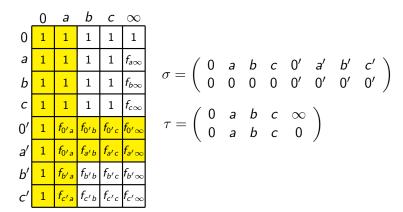


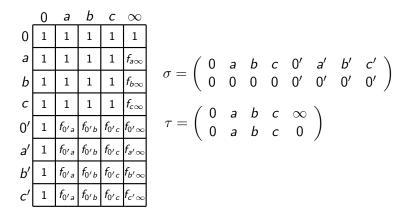


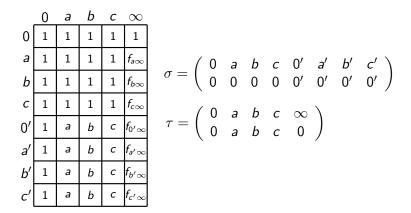


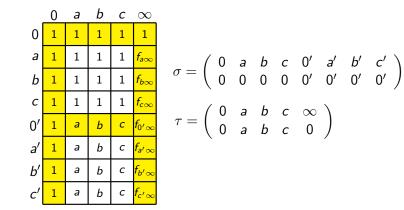


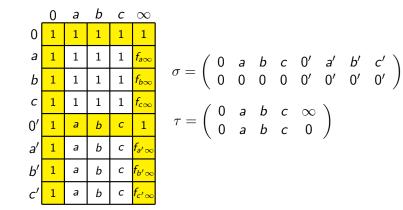


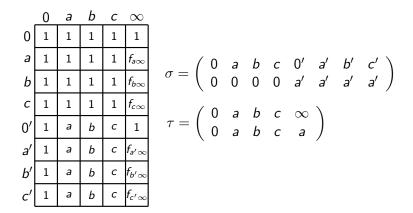


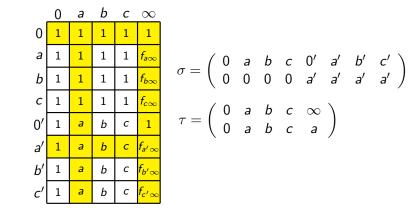


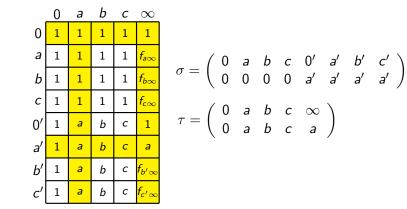


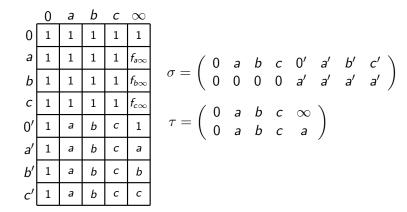


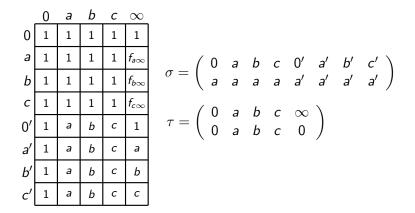


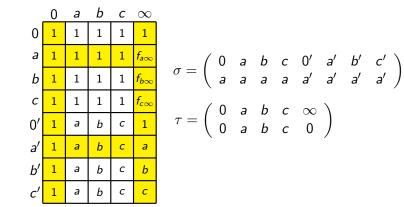


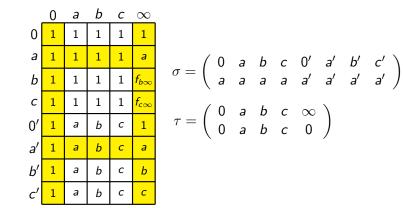




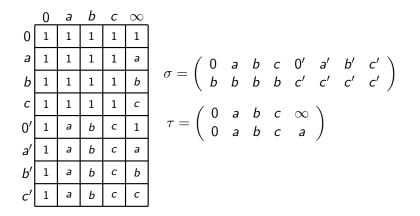


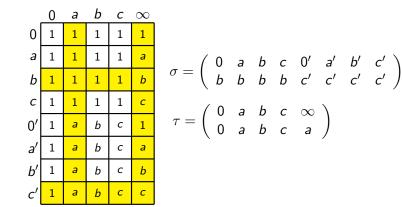


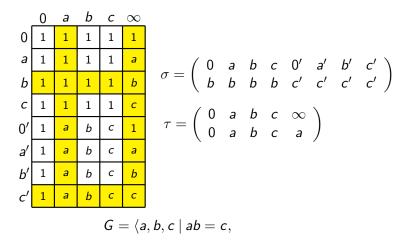


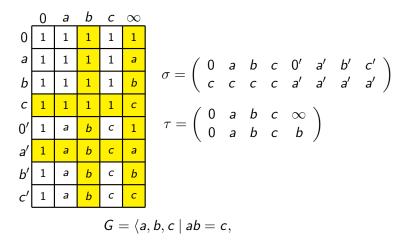


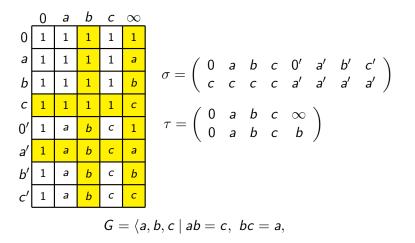


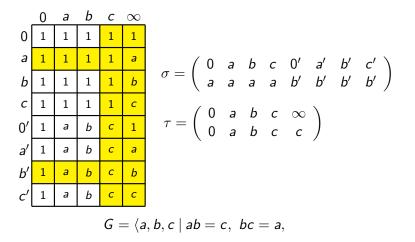


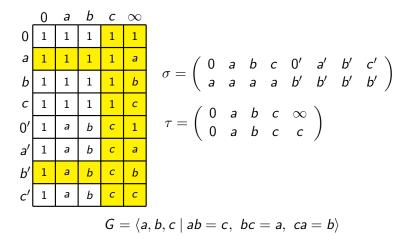












Subgroups of IG(B), B band

Theorem

For any group G there exists a band B such that IG(B) has a maximal subgroup isomorphic to G. Furthermore, if G is finitely presented, then B can be constructed to be finite.

Remark

- G has two \mathcal{D} -classes, K and L.
- If $G = \langle A | R \rangle$ with |A| = m, |R| = n, then
 - K is a $(2m+2) \times (m+2)$ rectangular band;
 - L is a left zero semigroup of order 2m + n + 1.

Future directions: word problem

Fact

Suppose S is a finite regular semigroup. The word problem for RIG(E) is solvable iff the word problem for each of its maximal subgroups is solvable.

Open Problem

Is it true that the word problem for IG(E) arising from a finite semigroup is solvable iff the word problem for each of its maximal subgroups is solvable?

Open Problem

Is it true that the word problem for IG(E) arising from a finite semigroup is solvable iff the word problem for each of its Schützenberger groups is solvable?

Open Problem

Can IG(E) have non-trivial Schützenberger groups in non-regular D-classes?

... Try again. Fail again. Fail better.

(S. Beckett, Worstword Ho)

