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On clones . . .

Given a set A.

O
(n)
A := {f | f : An → A}, OA := ∪n∈N\{0}O

(n)
A ,

F (n) := F ∩ O
(n)
A , for F ⊆ OA,

Projections: JA := {eni | eni (x1, . . . , xn) = xi , n ∈ N},

Composition: For f ∈ O
(n)
A , g1, . . . , gn ∈ O

(m)
A

f ◦ 〈g1, . . . , gn〉(x1, . . . , xm) := f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

C ⊆ OA is a clone on A if

JA ⊆ C , and

whenever f ∈ C (n), g1, . . . gn ∈ C (m), then f ◦ 〈g1, . . . , gn〉 ∈ C (m).
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. . . and their generating systems

If M ⊆ OA, then 〈M〉OA
is the smallest clone on A that contains M.

If C ≤ A and C = 〈M〉OA
, then M is a generating system for C .

Question

If we consider a structure A and its polymorphism clone PolA, what can
be said about its generating systems?
In particular, what happens if A is a homogeneous structure?
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The evergreen result of Sierpiński

Theorem (Sierpiński (1945))

For an arbitrary set A holds

〈

O
(2)
A

〉

OA
= OA,

i.e. the clone of all operations on A is generated by its binary part.
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Generating semigroups

Ruškuc introduced in 1994 the notion of relative ranks.

Higgins, Howie and Ruškuc showed in 1998 that the semigroup of all
transformations on an infinite set A is generated by the set of
permutations of A and two additional functions, i.e.

The semigroup of transformations of A has relative rank 2 modulo the full
symmetric group on A.
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Relative rank for clones

Let F be a clone on a set A and let M ⊆ F be an arbitrary subset of F .

A subset N of F is called generating set of F modulo M if

〈M ∪ N〉OA
= F .

The relative rank of F modulo M is the smallest cardinal of a
generating set N of F modulo M, and is denoted by

rank(F : M).

On generating sets of polymorphism clones of homogeneous structures Maja Pech



Beyond Sierpiński’s theorem

Proposition

Let A be a structure such that there exists a retraction r : A ։ A2. Then

rank(PolA : EndA) = 1.

In particular, PolA is generated by EndA together with a section

ǫ : A2 →֒ A with r ◦ ǫ = 1A2 .
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Example: Rado graph I

The Rado-graph is, up to isomorphism, the unique countably infinite
graph R such that for all disjoint finite sets U,V of vertices there exists a
vertex c joint to all elements of U and to none in V .

Theorem (Bonato, Delić 2000)

A countable graph G is isomorphic to a retract of the Rado graph if and
only if G is algebraically closed.

Remark

A countable graph G is algebraically closed if every finite set S ⊆ V (G )
has a common neighbor.
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Example: Rado graph II

Observation

The square R2 of the Rado graph R is algebraically closed.

Let A ⊆ V (R2), A = {(a1, b1), . . . , (an, bn)}.

For U := {a1, . . . , an, b1, . . . , bn} and V := ∅ exists a c ∈ V (R)
connected to all vertices of U.

Consider (c , c) ∈ V (R2). This is a common neighbor of A.
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Homogeneity . . .

Given is a structure A.

A local isomorphism of a structure A is an isomorphism between
finite substructures of A.

A structure A is homogeneous if every local isomorphism of A
extends to an automorphism of A.
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. . . and AP (Amalgamation property)
Let C be a class of structures. If

A,B1,B2 ∈ C, and

f1 : A →֒ B1 and f2 : A →֒ B2 are embeddings,

then there are

C ∈ C, and

embeddings g1 : B1 →֒ C and g2 : B2 →֒ C

such that the following diagram commutes:

A B1

B2 C

f1

f2

g2

g1

i.e.
g1 ◦ f1 = g2 ◦ f2.
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Age

The age of a structure A is the class of all finitely generated
structures that embed into A.

Let C be a class of finitely generated structures over the same signature.

Hereditary property (HP)
If A ∈ C, and B →֒ A, then B ∈ C.
Joint embedding property (JEP)
If A,B ∈ C, then there exists a C ∈ C such that both A and B are
embeddable in C.

Theorem (Fräıssé)

C is the age of a countable structure iff it has, up to isomorphism,
countably many structures, and it has the HP and the JEP.
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Fräıssé-classes and Fräıssé-limit

An age that has AP is called Fräıssé class.

Theorem (Fräıssé)

C is a Fräıssé class iff there is a countable homogeneous structure U, such
that C is the age of U.
All countable homogeneous structures of age C are mutually isomorphic.

U is called the Fräıssé-limit of the class C.
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Homomorphism-homogeneity. . .

Given is a structure A.

A local homomorphism of a structure A is a homomorphism from a
finite substructure of A to A.

Cameron and Nešeťril (2002):
A structure A is homomorphism-homogeneous if every local
homomorphism of A extends to an endomorphism of A.
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. . . and HAP (Homo-almagamation property)
Let C be a class of structures. If

A,B1,B2 ∈ C,
f1 : A → B1 is a homomorphism, and
f2 : A →֒ B2 is an embedding,

then there are

C ∈ C,
an embedding g1 : B1 →֒ C , and
a homomorphism g2 : B2 → C

such that the following diagram commutes:

A B1

B2 C

f1

f2

g2

g1

i.e.
g1 ◦ f1 = g2 ◦ f2.
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Amalgamated extension property (Kubís)
Let C be a class of countable, finitely generated structures. If

A,B1,B2,T ∈ C,
f1 : A →֒ B1, f2 : A →֒ B2 are embeddings, and
h1 : B1 → T, h2 : B2 → T are homomorphisms, with h1 ◦ f1 = h2 ◦ f2.

then there are

C,T′ ∈ C,
embeddings g1 : B1 →֒ C, g2 : B2 →֒ C, k : T →֒ T′ and
a homomorphism h : C → T′

such that the following diagram commutes:

T′

T

B1 C

A B2

f1

f2

g1

g2

h1

h2

h

k
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Main result

Let EmbA be the submonoid of EndA that consists of all homomorphic
self-embeddings of A.

Theorem

Let C be a Fräıssé-class with Fräıssé-limit U, such that

(1) C is closed with respect to finite products;

(2) C has the HAP, and

(3) C has the amalgamated extension property.

Then
rank(PolA : EmbA) ≤ 2.

In particular, PolU is generated by EmbU together with an unary and a
binary polymorphism.
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Further examples

The polymorphism clones of the following structures have relative rank at
most 2 modulo the respective self-embedding monoids:

the Rado graph R ;

the countable generic poset P = (P ,≤);

the countable atomless Boolean algebra B;

the countable universal homogeneous lattice Ω;

the countable universal homogeneous distributive lattice D;

the infinite-dimensional vector-space Fω for any countable field F;

the rational Urysohn space UQ;

the rational Urysohn sphere of radius 1.
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An open problem

The age of (Q,≤) is not closed with respect to finite products.

(1) Does Pol(Q,≤) have a generating set of bounded arity?

(2) What is its relative rank with respect to

End(Q,≤), Emb(Q,≤), or even Aut(Q,≤)?
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