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Set-up

M is a model,
M = (R,+, ·, <, . . . )
M = (Z,+)
T = Th(M) in language L = L(M)
U ⊆ M is definable if U is a solution set of an equation (with
parameters from M) or more generally a formula ϕ(x) with
quantifiers.
ϕ(x) = ∃y x · y = 1
U = ϕ(M).
Def (M) = {definable subsets of M} this is a Boolean algebra.
Assume M ≺ N and U = ϕ(M) ∈ Def (M).
Let UN = ϕ(N). So UN ∈ Def (N).
Let a ∈ N.

tp(a/M) = {U ∈ Def (M) : a ∈ UN}

= {ϕ(x) ∈ L(M) : a ∈ ϕ(N)}
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Types

tp(a/M) is an ultrafilter in Def (M).
Let S(M) = S(Def (M)) be the Stone space of ultrafilters in
Def (M).
S(M) is called the space of complete types over M.
tp(a/M) ∈ S(M).
Every U ∈ S(M) equals tp(a/M) for some N � M and a ∈ N.
S(M) is a compact topological space:
U ∈ Def (M) [U] = {p ∈ S(M) : U ∈ p} a basic clopen set in
S(M).
More generally, a type over M is a filter in Def (M).
Similarly, for A ⊆ M, (complete) types over A:
S(A) = {complete types over A} = S(DefA(M)).
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Types and automorphisms

Let C � M be large, saturated (a monster model).
For a small A ⊆ C let Aut(C/A) = {f ∈ Aut(C) : f |A = idA}.
Aut(C/A) acts on:

C

Def (C) (by automorphisms)

S(C) = S(Def (C)), by homeomorphisms.

The orbits of this action = sets of the form p(C), p ∈ S(A).
DefA(C) ⊆ Def (C) subalgebra
r : S(C)→ S(A) restriction function
S(C) 3 p 7→ r(p) = p ∩ DefA(C)
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Stable theories

In model theory we

count types (stability hierarchy
stable theories, models = theories, models with few types)

measure types and definable sets (with various ranks):

S(A) is a compact topological space.
The Cantor-Bendixson rank on S(A), S(M) (coming from
CB-derivative) is called the Morley rank:
RM : S(M)→ Ord ∪ {∞}

the main tool in Morley categoricity theorem (1964)

large types = types with large RM.
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Stable theories and forking

Let p ∈ S(A), q ∈ S(C) and p ⊆ q. Then RM(q) ≤ RM(p).
q is a large extension of p if RM(q) = RM(p).
This leads to:

the notion of non-forking extension of a type (Shelah).

forking independence

geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms.
Works well for stable theories.
Extensions of the method to some unstable theories:

theories with NIP (including o=minimality, R)

simple theories (random graph, pseudo-finite fields)

Here forking loses its explaining power.
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Orbits

Fact

Assume T is stable, A ⊂ C, p ∈ S(A), q ∈ S(C) and p ⊆ q. Then
TFAE:

1 q is a non-forking extension of p.

2 The orbit of q under Aut(C/A) has bounded size (actually,
≤ 2|T |+|A|).

Assume T is unstable.

1. and 2. are no longer equivalent.

Instead of considering 1. we may consider 2.

Idea

q is a large type extending p iff
the orbit of q under Aut(C/A) is small.
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Topological dynamics

Definition

(1) X is a G -flow if

X is a compact topological space

G acts on X by homeomorphisms

(2) Y ⊆ X is a G -subflow of X if Y is closed and G -closed.

Example

Let X be a G -flow and p ∈ X . Then cl(Gp) is a subflow of X
generated by p.
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Topological dynamics

Definition continued

Assume X is a G -flow and p ∈ X .
(3) p is periodic if the orbit Gp is finite.
(4) p is almost periodic if cl(Gp) is a minimal subflow of X .
(5) U ⊆ X is generic if (∃A ⊆fin G )AU = X .
(6) U ⊆ X is weakly generic if (∃V ⊆ X )U ∪V is generic and V is
non-generic.
(7) p is [weakly] generic if every open U 3 p is.

Assume X is a G -flow.
WGen(X ) = {p ∈ X : p is weakly generic}
Gen(X ) = {p ∈ X : p is generic}
APer(X ) = {p ∈ X : p is almost periodic}
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Topological dynamics

Fact

APer(X ) =
⋃
{minimal subflows of X}

APer(X ) 6= ∅
WGen(X ) = cl(APer(X ))

If Gen(X ) 6= ∅, then Gen(X ) = WGen(X ) = APer(X )

Gen(X ) 6= ∅ iff there is just one minimal subflow of X .
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Topological dynamics

Let X be a G -flow.
G 3 g  πg : X

≈→ X , πg (x) = g · x ,

E (X ) = cl({πg : g ∈ G}) ⊆ XX

cl is the topological closure w.r. to pointwise convergence
topology in XX

E (X ) is the Ellis (enveloping) semigroup of X

E (X ) is a G -flow:
1. for f ∈ E (X ) and g ∈ G , g ∗ f = πg ◦ f
2. {πg : g ∈ G} is a dense G -orbit.

◦ is continuous on E (X ), in the first coordinate.
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Ellis semigroup

Definition

1. I ⊆ E (X ) is an ideal if I 6= ∅ and fI ⊆ I for every f ∈ E (X ).
2. j ∈ E (X ) is an idempotent if j2 = j .

Properties of E (X )

Minimal subflows of E (X ) = minimal ideals in E (X ).

Let I ⊆ E (X ) be a minimal ideal and j ∈ I be an idempotent.
Then jI ⊆ I is a group (with identity j), called an ideal
subgroup of E (X ) and
I is a union of its ideal subgroups.

The ideal subgroups of E (X ) are isomorphic.

E (X ) explains the structure of X .
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Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Let A ⊆ C, p ∈ S(A), Sp(C) = {q ∈ S(C) : p ⊆ q}.
Sp(C) is a closed subspace of S(C).
G := Aut(C/A) acts on S(C) by homeomorphisms.

S(C) is a G -flow.

Sp(C) is a G -subflow.

Almost periodic/[weakly] generic types q ∈ Sp(C) good candidates
for ”large” extensions of p.

Specialized notions

U ∈ Def (C) is p-generic if p(C) is covered by finitely many
A-conjugates of U.

U ∈ Def (C) is weakly p-generic if U ∪V is p-generic for some
non-p-generic V ∈ Def (C).

q ∈ Sp(C) is [weakly] p-generic if every U ∈ q is.

Newelski Topological methods in model theory



Model theory

Fact

1 WGen(Sp(C)) = cl(APer(Sp(C))).

2 If Gen(Sp(C)) 6= ∅, then
Gen(Sp(C)) = WGen(Sp(C)) = APer(Sp(C)).

3 If T is stable, then Gen(Sp(C)) 6= ∅ and it consists exactly of
the non-forking extensions of p.

This was used recently by Kaplan, Miller, Simon to prove a
conjecture of Pillay and others on Lascar strong types.
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Group and semi-group connection

Assume G ⊆ M is a definable group. Let DefG (M) = {definable
subsets of G}.

DefG (M) is a Boolean algebra od sets, closed under left
translation in G .

SG (M) = S(DefG (M)) is the space of G -types over M.

G acts on SG (M) by left translation.

SG (M) is a G -flow.

The Ellis semigroup E (SG (M) has nice model-theoretic properties.
The ideal subgroups of E (SG (M)) are closely related to some
model-theoretic connected components of G .
Questions on the model-theoretic absoluteness of the
topological-dynamic notions in model theory.
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