Topological methods in model theory

Ludomir Newelski

Instytut Matematyczny Uniwersytet Wrocławski

June 2013

Newelski Topological methods in model theory

M is a model,

$$M = (\mathbb{R}, +, \cdot, <, \dots)$$

$$M=(\mathbb{Z},+)$$

$$T = Th(M)$$
 in language $L = L(M)$

 $U \subseteq M$ is definable if U is a solution set of an equation (with parameters from M) or more generally a formula $\varphi(x)$ with quantifiers.

$$\varphi(x) = \exists y \ x \cdot y = 1$$

 $U = \varphi(M)$.
 $Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.}$
Assume $M \prec N$ and $U = \varphi(M) \in Def(M)$.
Let $U^N = \varphi(N)$. So $U^N \in Def(N)$.
Let $a \in N$.

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{split} \varphi(x) &= \exists y \ x \cdot y = 1 \\ U &= \varphi(M). \\ Def(M) &= \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U &= \varphi(M) \in Def(M). \\ \text{Let } U^N &= \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{split}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

M is a model, $M = (\mathbb{R}, +, \cdot, <, \dots)$ $M = (\mathbb{Z}, +)$ T = Th(M) in language L = L(M)

 $U \subseteq M$ is definable if U is a solution set of an equation (with parameters from M) or more generally a formula $\varphi(x)$ with quantifiers.

$$\begin{array}{l} \varphi(x) = \exists y \; x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \; \text{this is a Boolean algebra.} \\ \text{Assume } M \prec N \; \text{and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \; \text{So } \; U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

M is a model, $M = (\mathbb{R}, +, \cdot, <, ...)$ $M = (\mathbb{Z}, +)$ T = Th(M) in language L = L(M) $U \subseteq M$ is definable if *U* is a solution set of an equation (with parameters from *M*) or more generally a formula $\varphi(x)$ with quantifiers.

$$\begin{split} \varphi(x) &= \exists y \ x \cdot y = 1 \\ U &= \varphi(M). \\ Def(M) &= \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U &= \varphi(M) \in Def(M). \\ \text{Let } U^N &= \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{split}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{aligned} \varphi(\mathbf{x}) &= \exists \mathbf{y} \ \mathbf{x} \cdot \mathbf{y} = \mathbf{1} \\ U &= \varphi(M). \\ Def(M) &= \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U &= \varphi(M) \in Def(M). \\ \text{Let } U^N &= \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{aligned}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{array}{l} \varphi(x) = \exists y \ x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

M is a model, $M = (\mathbb{R}, +, \cdot, <, ...)$ $M = (\mathbb{Z}, +)$ T = Th(M) in language L = L(M) $U \subseteq M$ is definable if *U* is a solution set of an equation (with parameters from *M*) or more generally a formula $\varphi(x)$ with quantifiers.

$$\begin{split} \varphi(x) &= \exists y \ x \cdot y = 1 \\ U &= \varphi(M). \\ Def(M) &= \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U &= \varphi(M) \in Def(M). \\ \text{Let } U^N &= \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{split}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

M is a model, $M = (\mathbb{R}, +, \cdot, <, ...)$ $M = (\mathbb{Z}, +)$ T = Th(M) in language L = L(M) $U \subseteq M$ is definable if *U* is a solution set of an equation (with parameters from *M*) or more generally a formula $\varphi(x)$ with quantifiers.

$$\begin{split} \varphi(x) &= \exists y \ x \cdot y = 1 \\ U &= \varphi(M). \\ Def(M) &= \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U &= \varphi(M) \in Def(M). \\ \text{Let } U^N &= \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{split}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{array}{l} \varphi(x) = \exists y \ x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{array}{l} \varphi(x) = \exists y \ x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{array}{l} \varphi(x) = \exists y \ x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

$$\begin{array}{l} \varphi(x) = \exists y \ x \cdot y = 1 \\ U = \varphi(M). \\ Def(M) = \{ \text{definable subsets of } M \} \text{ this is a Boolean algebra.} \\ \text{Assume } M \prec N \text{ and } U = \varphi(M) \in Def(M). \\ \text{Let } U^N = \varphi(N). \text{ So } U^N \in Def(N). \\ \text{Let } a \in N. \end{array}$$

$$tp(a/M) = \{U \in Def(M) : a \in U^N\}$$
$$= \{\varphi(x) \in L(M) : a \in \varphi(N)\}$$

tp(a/M) is an ultrafilter in Def(M).

Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

★ Ξ →

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M)$. Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some N

S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

→ 3 → < 3</p>

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

$tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

A B > A B >

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$.

S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

A B > A B >

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

- - E + - E +

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M). S(M) is called the space of complete types over M. $tp(a/M) \in S(M).$ Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space: $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in

同 ト イ ヨ ト イ ヨ ト

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M).

S(M) is called the space of complete types over M.

 $tp(a/M) \in S(M).$

Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space:

 $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a **type** over M is a filter in Def(M). Similarly, for $A \subseteq M$, (complete) types over A: $S(A) = \{\text{complete types over } A\} = S(Def_A(M)).$

伺 ト く ヨ ト く ヨ ト

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M). S(M) is called the space of complete types over M. $tp(a/M) \in S(M)$. Every $U \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space: $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M).

More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A: $S(A) = \{\text{complete types over } A\} = S(Def_A(M)).$

伺 ト く ヨ ト く ヨ ト

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M). S(M) is called the space of complete types over M. $tp(a/M) \in S(M)$. Every $U \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space: $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M). More generally, a type over M is a filter in Def(M).

Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{ \text{complete types over } A \} = S(Def_A(M)).$

伺 ト く ヨ ト く ヨ ト

tp(a/M) is an ultrafilter in Def(M). Let S(M) = S(Def(M)) be the Stone space of ultrafilters in Def(M). S(M) is called the space of complete types over M. $tp(a/M) \in S(M)$. Every $\mathcal{U} \in S(M)$ equals tp(a/M) for some $N \succ M$ and $a \in N$. S(M) is a compact topological space: $U \in Def(M) \rightsquigarrow [U] = \{p \in S(M) : U \in p\}$ a basic clopen set in S(M). More generally, a type over M is a filter in Def(M). Similarly, for $A \subseteq M$, (complete) types over A:

 $S(A) = \{\text{complete types over } A\} = S(Def_A(M)).$

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

• $Def(\mathfrak{C})$ (by automorphisms)

• $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

• $Def(\mathfrak{C})$ (by automorphisms)

• $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

• $Def(\mathfrak{C})$ (by automorphisms)

• $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

• $Def(\mathfrak{C})$ (by automorphisms)

• $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

• C

- $Def(\mathfrak{C})$ (by automorphisms)
- $S(\mathfrak{C}) = S(Def(\mathfrak{C}))$, by homeomorphisms.

In model theory we

 count types (stability hierarchy stable theories, models = theories, models with few types)

• measure types and definable sets (with various ranks):

S(A) is a compact topological space. The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank: $RM : S(M) \rightarrow Ord \cup \{\infty\}$

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

In model theory we

• count types (stability hierarchy

stable theories, models = theories, models with few types)

• measure types and definable sets (with various ranks):

S(A) is a compact topological space. The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank: $RM : S(M) \rightarrow Ord \cup \{\infty\}$

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

• count types (stability hierarchy

stable theories, models = theories, models with few types)

• measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

 count types (stability hierarchy stable theories, models = theories, models with few types)

• measure types and definable sets (with various ranks): S(A) is a compact topological space. The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank: $RM : S(M) \rightarrow Ord \cup \{\infty\}$

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

S(A) is a compact topological space.

The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank: $RM : S(M) \rightarrow Ord \cup \{\infty\}$

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):
- S(A) is a compact topological space. The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank: $RM : S(M) \rightarrow Ord \cup \{\infty\}$
 - the main tool in Morley categoricity theorem (1964)
 - large types = types with large RM.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

S(A) is a compact topological space. The Cantor-Bendixson rank on S(A), S(M) (coming from CB-derivative) is called the Morley rank:

 $RM: S(M) \rightarrow Ord \cup \{\infty\}$

- the main tool in Morley categoricity theorem (1964)
- large types = types with large *RM*.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large *RM*.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large *RM*.

- count types (stability hierarchy stable theories, models = theories, models with few types)
- measure types and definable sets (with various ranks):

- the main tool in Morley categoricity theorem (1964)
- large types = types with large RM.

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

Stable theories and forking

Let $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then $RM(q) \leq RM(p)$. q is a large extension of p if RM(q) = RM(p). This leads to:

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms.

Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories. Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms.

Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms.

Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, ℝ)
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)
 Here forking loses its explaining power.

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

- the notion of non-forking extension of a type (Shelah).
- forking independence
- geometric stability theory (Zilber, Hrushovski, Pillay, ...)

The definition of forking given in combinatorial terms. Works well for stable theories.

Extensions of the method to some unstable theories:

- theories with NIP (including o=minimality, \mathbb{R})
- simple theories (random graph, pseudo-finite fields)

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- ② The orbit of *q* under $Aut(\mathfrak{C}/A)$ has bounded size (actually, ≤ $2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

ldea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under Aut(𝔅/A) has bounded size (actually, ≤ 2^{|T|+|A|}).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

ldea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

ldea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

q is a large type extending p iff

the orbit of q under $Aut(\mathfrak{C}/A)$ is small.

Assume T is stable, $A \subset \mathfrak{C}$, $p \in S(A)$, $q \in S(\mathfrak{C})$ and $p \subseteq q$. Then TFAE:

- q is a non-forking extension of p.
- The orbit of q under $Aut(\mathfrak{C}/A)$ has bounded size (actually, $\leq 2^{|\mathcal{T}|+|A|}$).

Assume T is unstable.

- 1. and 2. are no longer equivalent.
- Instead of considering 1. we may consider 2.

Idea

(1) X is a G-flow if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) $Y \subseteq X$ is a *G*-subflow of X if Y is closed and *G*-closed.

Example

(1) X is a G-flow if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) $Y \subseteq X$ is a *G*-subflow of X if Y is closed and *G*-closed.

Example

(1) X is a **G-flow** if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) $Y \subseteq X$ is a *G*-subflow of X if Y is closed and *G*-closed.

Example

(1) X is a **G-flow** if

- X is a compact topological space
- G acts on X by homeomorphisms

(2) $Y \subseteq X$ is a *G*-subflow of X if Y is closed and *G*-closed.

Example

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.
(4) p is almost periodic if cl(Gp) is a minimal subflow of X.
(5) U ⊆ X is generic if (∃A ⊆_{fin} G)AU = X.
(6) U ⊆ X is weakly generic if (∃V ⊆ X)U ∪ V is generic and V is non-generic.
(7) n is [weakly] generic if every open U ⊇ n is

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X) U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X) U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow. $WGen(X) = \{p \in X : p \text{ is weakly generic}\}$ $Gen(X) = \{p \in X : p \text{ is generic}\}$ $APer(X) = \{p \in X : p \text{ is almost periodic}\}$

→ Ξ →

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow. $WGen(X) = \{p \in X : p \text{ is weakly generic}\}$ $Gen(X) = \{p \in X : p \text{ is generic}\}$ $APer(X) = \{p \in X : p \text{ is almost periodic}\}$

★ ∃ →

Assume X is a G-flow and $p \in X$.

- (3) p is periodic if the orbit Gp is finite.
- (4) p is almost periodic if cl(Gp) is a minimal subflow of X.
- (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.
- (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow.

 $WGen(X) = \{ p \in X : p \text{ is weakly generic} \}$ $Gen(X) = \{ p \in X : p \text{ is generic} \}$ $APer(X) = \{ p \in X : p \text{ is almost periodic} \}$

★ ∃ >

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$.

- (3) p is periodic if the orbit Gp is finite.
- (4) p is almost periodic if cl(Gp) is a minimal subflow of X.
- (5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.
- (6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

Assume X is a G-flow and $p \in X$.

(3) p is periodic if the orbit Gp is finite.

(4) p is almost periodic if cl(Gp) is a minimal subflow of X.

(5) $U \subseteq X$ is generic if $(\exists A \subseteq_{fin} G)AU = X$.

(6) $U \subseteq X$ is weakly generic if $(\exists V \subseteq X)U \cup V$ is generic and V is non-generic.

(7) p is [weakly] generic if every open $U \ni p$ is.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)

• $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

- $APer(X) = \bigcup \{ \text{minimal subflows of } X \}$
- $APer(X) \neq \emptyset$
- WGen(X) = cl(APer(X))
- If $Gen(X) \neq \emptyset$, then Gen(X) = WGen(X) = APer(X)
- $Gen(X) \neq \emptyset$ iff there is just one minimal subflow of X.

Let X be a G-flow. $G \ni g \rightsquigarrow \pi_g : X \xrightarrow{\approx} X, \ \pi_g(x) = g \cdot x,$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a G-flow:
 - 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$
 - 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \stackrel{\approx}{\to} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in *X*^{*X*}
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g \in$
 - 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- • is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \xrightarrow{\approx} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow:
 - 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$
 - 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- • is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \xrightarrow{\approx} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a G-flow:
 1. for f ∈ E(X) and g ∈ G, g * f = π_g ∘ f
 2. {π_g : g ∈ G} is a dense G-orbit.
- \circ is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \stackrel{\approx}{\to} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow:
 - 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- ○ is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \xrightarrow{\approx} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \stackrel{\approx}{\to} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

Let X be a G-flow.

$$G \ni g \rightsquigarrow \pi_g : X \xrightarrow{\approx} X, \ \pi_g(x) = g \cdot x,$$

$$E(X) = cl(\{\pi_g : g \in G\}) \subseteq X^X$$

- *cl* is the topological closure w.r. to pointwise convergence topology in X^X
- E(X) is the Ellis (enveloping) semigroup of X
- E(X) is a *G*-flow: 1. for $f \in E(X)$ and $g \in G$, $g * f = \pi_g \circ f$ 2. $\{\pi_g : g \in G\}$ is a dense *G*-orbit.
- \circ is continuous on E(X), in the first coordinate.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- *E*(*X*) explains the structure of *X*.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- *E*(*X*) explains the structure of *X*.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and

I is a union of its ideal subgroups.

- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

Properties of E(X)

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.

E(X) explains the structure of X.

1. $I \subseteq E(X)$ is an ideal if $I \neq \emptyset$ and $fI \subseteq I$ for every $f \in E(X)$. 2. $j \in E(X)$ is an idempotent if $j^2 = j$.

- Minimal subflows of E(X) = minimal ideals in E(X).
- Let I ⊆ E(X) be a minimal ideal and j ∈ I be an idempotent. Then jI ⊆ I is a group (with identity j), called an ideal subgroup of E(X) and I is a union of its ideal subgroups.
- The ideal subgroups of E(X) are isomorphic.
- E(X) explains the structure of X.

Let $A \subseteq \mathfrak{C}, \ p \in S(A), \ S_{\rho}(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}.$

 $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphism

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$.

 $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

イロト イポト イヨト イヨト

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

< ロ > < 同 > < 回 > < 回 >

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

< ロ > < 同 > < 回 > < 回 >

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

< ロ > < 同 > < 回 > < 回 >

Let $A \subseteq \mathfrak{C}$, $p \in S(A)$, $S_p(\mathfrak{C}) = \{q \in S(\mathfrak{C}) : p \subseteq q\}$. $S_p(\mathfrak{C})$ is a closed subspace of $S(\mathfrak{C})$. $G := Aut(\mathfrak{C}/A)$ acts on $S(\mathfrak{C})$ by homeomorphisms.

- $S(\mathfrak{C})$ is a *G*-flow.
- $S_p(\mathfrak{C})$ is a *G*-subflow.

Almost periodic/[weakly] generic types $q \in S_p(\mathfrak{C})$ good candidates for "large" extensions of p.

Specialized notions

- U ∈ Def(𝔅) is p-generic if p(𝔅) is covered by finitely many A-conjugates of U.
- U ∈ Def(𝔅) is weakly p-generic if U ∪ V is p-generic for some non-p-generic V ∈ Def(𝔅).
- $q \in S_p(\mathfrak{C})$ is [weakly] *p*-generic if every $U \in q$ is.

- 4 同 6 4 日 6 4 日 6

• $WGen(S_p(\mathfrak{C})) = cl(APer(S_p(\mathfrak{C}))).$

If $Gen(S_p(\mathfrak{C})) \neq \emptyset$, then $Gen(S_p(\mathfrak{C})) = WGen(S_p(\mathfrak{C})) = APer(S_p(\mathfrak{C})).$

③ If *T* is stable, then $Gen(S_p(\mathfrak{C})) \neq \emptyset$ and it consists exactly of the non-forking extensions of *p*.

- $WGen(S_p(\mathfrak{C})) = cl(APer(S_p(\mathfrak{C}))).$
- ② If $Gen(S_p(\mathfrak{C})) \neq \emptyset$, then $Gen(S_p(\mathfrak{C})) = WGen(S_p(\mathfrak{C})) = APer(S_p(\mathfrak{C})).$
- If T is stable, then Gen(S_p(C)) ≠ Ø and it consists exactly of the non-forking extensions of p.

- $WGen(S_p(\mathfrak{C})) = cl(APer(S_p(\mathfrak{C}))).$
- If Gen(S_p(𝔅)) ≠ Ø, then Gen(S_p(𝔅)) = WGen(S_p(𝔅)) = APer(S_p(𝔅)).
- If T is stable, then Gen(S_p(𝔅)) ≠ Ø and it consists exactly of the non-forking extensions of p.

- $WGen(S_p(\mathfrak{C})) = cl(APer(S_p(\mathfrak{C}))).$
- If Gen(S_p(𝔅)) ≠ Ø, then Gen(S_p(𝔅)) = WGen(S_p(𝔅)) = APer(S_p(𝔅)).
- If T is stable, then Gen(S_p(𝔅)) ≠ Ø and it consists exactly of the non-forking extensions of p.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of *G*-types over *M*.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of *G*-types over *M*.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.

The Ellis semigroup $E(S_G(M))$ has nice model-theoretic properties. The ideal subgroups of $E(S_G(M))$ are closely related to some model-theoretic connected components of G.

Questions on the model-theoretic absoluteness of the topological-dynamic notions in model theory.

- $Def_G(M)$ is a Boolean algebra od sets, closed under left translation in G.
- $S_G(M) = S(Def_G(M))$ is the space of G-types over M.
- G acts on $S_G(M)$ by left translation.
- $S_G(M)$ is a *G*-flow.