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Invariant types

Let p(x) € S1(M) be a global type, and small A C M.

Type p(x) is A—invariant if f(p) = p, for every f € Aut(M).
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Invariant types

Let p(x) € S1(M) be a global type, and small A C M.
Type p(x) is A—invariant if f(p) = p, for every f € Aut(M).

Fact. If p(x) is A—invariant and B D A, then p(x) is B—invariant.
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Regular types

Let p(x) € S1(M) be a global non-algebraic type and small A C M.

Pair (p(x), A) is regular if:
Q@ p(x) is A—invariant and

@ for every aF p | A and every small B D A: either aF p | B or
p|BF p]| Ba.
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Regular types

Let p(x) € S1(M) be a global non-algebraic type and small A C M.

Pair (p(x), A) is regular if:
Q@ p(x) is A—invariant and

@ for every aF p | A and every small B D A: either aF p | B or
p|BF p]| Ba.

Fact. If (p(x),A) is a regular pair and B D A, then (p(x), B) is a regular
pair.
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Asymmetric types

Let p(x) € S1(M) be a global non-algebraic A—invariant type.

Type p(x) is asymmetric if for some B O A and Morley sequence (a, b) in
p over B: ab # ba (B).
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Asymmetric types

Let p(x) € S1(M) be a global non-algebraic A—invariant type.

Type p(x) is asymmetric if for some B O A and Morley sequence (a, b) in
p over B: ab # ba (B).

Suppose that pair (p(x), A) is regular and p(x) is asymmetric. Then there
exists a finite extension Ag of A and Ag—definable partial order < such
that every Morley sequence in p over Ag is strictly increasing.

A. Pillay, P. Tanovi¢, Generic stability, regularity and quasiminimality
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Clp7A

Let (p(x), A) be a regular pair. Assume that p(x) is asymmetric over A.
For X C (p|A)(M) we define closure cl, o(X) C (p|A)(M) with:
clpa(X) = {ak plA]| a¥ p|AX}.
For small B C (p|A)(M) we set:
clp a8(X) = clp a(BX).
Also, if M is some small model that contains A we define:

cl,“,’jA(X) = clp a(X)N'M and cl,';’fAvB(X) =cl,ag(X)NM.
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sclp.a

For a = p|A we define symmetric closure scl, a(a) C (p|A)(M) with:

sclpa(a) = {b € clpa(a) | acclya(b)}.

For X C (p|A)(M) we define symmetric closure scl, a(X) C (p|A)(M)
with:

sclp a(X) = U sclp a(a).
aeX

We also define scl, 4 8, scll\,/jA and SCIMAB.
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Some facts about cl, 4 and sclj 4

Q@ pIAX b plAcl, A(X):

@ cl, a (clp ) is closure operator on (p|A)(M);

Q clpa(ar, a,...,an) = clp a(a), where a is any maximal element in
{a1,a2,...,an};

Q (a, b) is Morley sequence in p over AB iff a ¢ cl, a(B) and
b ¢ cl, a(Ba);
Q clpa(X) = U sclp a(a);
(IxeX)a<x
O (p|A)(M)/sclpa = {sclpa(a) | aF p|A} is a partition of (p|A)(M);
Q (p[A)(M)/sclL\,/jA = {sclyA(a) | akE p|A} is a partition of (p|A)(M)
(M is small model that contains A).
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Order on (p|A)(M)/scl, 4

Suppose that sclp a(a) # sclp a(b) and a < b. Then for every
x € sclpa(a) and y € sclp a(b) is x < y.
If scl, a(a) # sclp A(b) and a £ b, then b < a.

Corollary. Set (p|A)(M)/scl, a is linearly ordered.
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Order on (p|A)(M)/scl, 4

Suppose that sclp a(a) # sclp a(b) and a < b. Then for every
x € sclpa(a) and y € sclp a(b) is x < y.
If scl, a(a) # sclp A(b) and a £ b, then b < a.

Corollary. Set (p|A)(M)/scl, a is linearly ordered.

Maximal Morley sequence in p over A in some small model M that contains
A is exactly any set of representatives of(p\A)(M)/scl,';/fA partition.

Corollary. Any two maximal Morley sequences in p over A in M have the
same order-type.
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Non-definable scl, 4

Assume that scl, a(a) is not Aa—definable, for some (every) a € (p|A)(M).
Then, for every countably order type there exists a countable model M
such that the maximal Morley sequence in p over A in M has that order

type.

Corollary. If there exists global A—invariant, regular and asymmetric type
whose scl,, 4 is not Aa—definable, then there are 2% non-isomorphic
countable models.
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Example of asymmetric regular types

Let M be a model of small o—minimal theory, p € S1(A) non-algebraic
type, and M monster model.

Fact. p(M) is convex set.

We have four kinds of p:

o (isolated type) there exist ¢, d € dcl(A) such that ¢ < x < d F p(x);

@ (non-cut) there exist ¢ € dcl(A) and strictly decreasing sequence (dp,)
in dcl(A) such that {c < x < d, | n€w}F p(x);

@ (non-cut) there exist strictly increasing sequence (c,) in dcl(A) and
d € dcl(A) such that {c, < x < d | n € w} F p(x);

@ (cut) there exist strictly increasing sequence (c,) and strictly
decreasing sequence (dy) in dcl(A) such that
{en <x < dp|new}ltr p(x).

Slavko Moconja (Belgrade)
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Left and right global extensions: Case |

Assume that there exists ¢ € dcl(A) such that ¢ determines p "on the left
side”. Then for every M—formula ¢, either ¢ or =¢ has interval that

contains (c, t), for some t € p(M).

We define left global extension of p: B B
pL(x) = {&(x) | #(M) contains (c, t), for some t € p(M)} € S1(M).

Similarly we define right global extension pg of p, if there exists
d € dcl(A) such that d determines p "on the right side”.
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Left and right global extensions: Case Il

Assume that there exists strictly increasing sequence (c,) such that (cp)
determines p "on the left side”. Then for every M—formula ¢, either ¢ or
—¢ has interval that contains all but finitely many c,.

We define left global extension of p: B
pL(x) = {&(x) | #(M) contains all but finitely many ¢,} € S1(M).

Similarly we define right global extension pg of p, if there exists strictly
decreasing sequence (d,) such that (d,) determines p "on the right side”.
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pr and pg

Theorem

Both p; and pr are A—invariant, regular and asymmetric extensions of p.
Moreover, p; and pr are the only two global A—invariant extensions of p.

Any Morley sequence in pgr is strictly increasing, and any Morley sequence
in py is strictly decreasing.
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SCIPL',A' SC1PR7A

Let a € p(M). Then: -
sclp, a(a) = sclp, a(a) = convex closure (dcl(Aa) N p(M)).

Corollary. I € p(M) is a Morley sequence in p; over A in M iff it is Morley
sequence in pg over A in M. Also, I C p(M) is a maximal Morley
sequence in p; over A in M iff it is maximal Morley sequence in pr over A
in M, for any small model M that contains A.

Remark. If p € S1(A), then for some (any) a € p(M), scl,, a(a) is
Aa—definable iff scl,, a(a) = {a}.
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1%, J", dimension

Let p, g be two complete types (with parameters). We say that p L% q iff
p(x) Uq(y) F tp(xy).

LY is equivalence relation on S1(0). Let {p; | i € I} be the set of
non-algebraic representatives of this equivalence relation.
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1%, J", dimension

Let p, g be two complete types (with parameters). We say that p L% q iff
p(x) Uq(y) F tp(xy).

LY is equivalence relation on S1(0). Let {p; | i € I} be the set of
non-algebraic representatives of this equivalence relation.

Let M be any countable model, A; = maximal Morley sequence in pj;, and

M is prime over A.

M and N are isomorphic iff maximal Morley sequence in p;y. in M, and
maximal Morley sequence in pj. in N have the same order-type, for every
i€l
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Additional assumption

Assume that there are < 2% countable models.
Then scl,, g(a) = {a}, for every type p;.

Let M be a countable model. Under this assumption if p is:
@ algebraic type, then p(M) is a point;
@ isolated type, then p(M) is Q;
@ non-cut, then there are 3 possibilities for p(M);
© cut, then there are 6 possibilities for p(M).

Since there are < 280 countable models, there are only finitely many

non-isolated types in {p; |€ I}. If m of them are cuts, and n of them are
non-cuts, then there are exactly 63" countable models.
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Additional assumption

Assume that there are < 2% countable models.
Then scl,, g(a) = {a}, for every type p;.

Let M be a countable model. Under this assumption if p is:
@ algebraic type, then p(M) is a point;
@ isolated type, then p(M) is Q;
@ non-cut, then there are 3 possibilities for p(M);
© cut, then there are 6 possibilities for p(M).

Since there are < 280 countable models, there are only finitely many
non-isolated types in {p; |€ I}. If m of them are cuts, and n of them are
non-cuts, then there are exactly 63" countable models.

Laura Mayer, Vaught's Conjecture for o—Minimal Theories
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Thank you for your attention!

Slavko Moconja (Belgrade) Asymmetric regular types 17 /17



