Sierpiński rank of groups and semigroups

J. D. Mitchell
School of Mathematics and Statistics, University of St Andrews

8th June 2013

Sierpiński Rank

The Sierpiński rank of a semigroup S is the least $N \in \mathbb{N}$ such that every countable set of elements in S is contained in an N-generated subsemigroup, if such an N exists.

Theorem (Sierpiński '35)
The Sierpiński rank of Ω^{Ω} is 2 .

The Hyde-Star-Trek-Analogy proof...

Theorem (Sierpiński '35)

The Sierpiński rank of Ω^{Ω} is 2 .
Proof. Suppose Ω is countable and identify Ω with the eventually constant sequences over \mathbb{N}.

- let $f_{1}, f_{2}, \ldots \in \Omega^{\Omega}$
- define:

$$
\begin{aligned}
a:\left(x_{0}, x_{1}, \ldots\right) & \mapsto\left(0, x_{0}, x_{1}, \ldots\right) \\
b:\left(x_{0}, x_{1}, \ldots\right) & \mapsto\left(x_{0}+1, x_{1}, \ldots\right) \\
c:\left(x_{0}, x_{1}, \ldots\right) & \mapsto\left(x_{1}, x_{2}, \ldots\right) f_{x_{0}}
\end{aligned}
$$

- $\left(x_{0}, x_{1}, \ldots\right) \stackrel{a}{\mapsto}\left(0, x_{0}, x_{1}, \ldots\right) \stackrel{b^{n}}{\mapsto}\left(n, x_{0}, x_{1}, \ldots\right) \stackrel{c}{\mapsto}\left(x_{0}, x_{1}, \ldots\right) f_{n}$ the previous line implies that: $a b^{n} c=f_{n}$ for all $n \geq 1$
- if we set $f_{0}=b$, then $b=f_{0}=a c$ and so $f_{n}=a(a c)^{n} c$.

Further examples...

- an infinite semigroup has Sierpiński rank 1 if and only if it is isomorphic to $(\mathbb{N},+)$.
- \exists uncountable semigroups with Sierpiński rank n for every $n \geq 2$.
- the increasing functions on the unit interval $[0,1]$ have Sierpiński rank 3.
- the endomorphism monoid of the random graph has Sierpiński rank 2 or 3.2.
- the partition monoid has Sierpiński rank ≤ 42.
- the surjective functions on Ω where $|\Omega|=\aleph_{n}(n \in \mathbb{N})$ have Sierpiński rank $n^{2} / 2+9 n / 2+7$.
- (Easty) the factorizable part of the dual symmetric inverse monoid on Ω where $|\Omega|=\aleph_{n}(n \in \mathbb{N})$ has Sierpiński rank $n^{2} / 2+3 n / 2+4$.
- the Baer-Levi semigroups and order-preserving functions on \mathbb{N} have infinite Sierpiński rank.

Sierpiński rank for groups

The Sierpiński rank of an infinite semigroupergroupgroupinverse semigroup S is the least $N \in \mathbb{N}$ such that every countable set of elements in S is contained in an N -generated subsemigroupsubsemigroupsubgroupsubsemigroupinverse subsemigroupsubsemigroup, if such an N exists.

- (Galvin '95) If $f_{0}, f_{1}, \ldots \in \operatorname{Sym}(\Omega)$, then there exist $a, b \in \operatorname{Sym}(\Omega)$ with finite order such that $f_{0}, f_{1}, \ldots \in\langle a, b\rangle$.
- (Truss) If G is the group of homeomorphisms of the Cantor space, \mathbb{Q}, or $\mathbb{R} \backslash \mathbb{Q}$, then G has Sierpiński rank 2 .
- (Calegari-Freedman-Cornulier '06) The group of homeomorphisms of the euclidean m-sphere have finite Sierpiński rank.
- the symmetric inverse and the dual symmetric inverse monoids have Sierpiński rank 2.

What did we really prove?

Strongly distorted

If $f_{0}, f_{1}, \ldots \in \Omega^{\Omega}$, then there exist $a, b \in \Omega^{\Omega}$ such that $f_{n} \in\langle a, b\rangle$ for all n and the length of the product is at most $2 n+2$.

Universal sequence

If $f_{0}, f_{1}, \ldots \in \Omega^{\Omega}$, then there exist $a, b \in \Omega^{\Omega}$ such that $f_{n}=a(a b)^{n} b$. (Not only is $f_{n} \in\langle a, b\rangle$ but we specified a product of a and b.)

These are 3 distinct notions.
For example, the surjective functions on Ω where $|\Omega|=\aleph_{5}$ have Sierpiński rank 42 but they do not satisfy either of the properties above.

Bergman's Property

Definition (Bergman's Property)

A semigroup S has this property if given any generating set U for S there exists $n \in \mathbb{N}$ such that $S=U \cup U^{2} \cup \cdots \cup U^{n}$.

Theorem (Bergman '05)

The symmetric group on any infinite set has my property!
Lots of groups have Bergman's property:

- (Shelah '76) an uncountable group G with $U^{240}=G$ for all generating sets U
- (Droste \& Göbel '05) the order-automorphisms of the rationals, the homeomorphisms of the irrationals, ...
Some don't:
- free groups and finitely generated infinite groups
- (Droste \& Göbel '05) $\{f \in \operatorname{Sym}(\mathbb{Q}): \exists k|i-(i) f| \leq k\}$

The connection?

Theorem (Galvin '95)
If $f_{0}, f_{1}, \ldots \in \operatorname{Sym}(\Omega)$, then $\exists a, b \in \operatorname{Sym}(\Omega)$ s.t. $f_{n} \in\langle a, b\rangle$ and $\left|f_{n}\right| \leq 4 n+18$.

Lemma (Droste \& Göbel '06)

Let S be a non-f.g. semigroup where every $\Psi: S \rightarrow \mathbb{N}$ satisfying

$$
(s t) \Psi \leq(s) \Psi+(t) \Psi+k_{\Psi} \quad \forall s, t \in S
$$

is bounded above. Then S has Bergman's Property.

Proof of Bergman's Theorem.

- Suppose $\Psi: \operatorname{Sym}(\Omega) \longrightarrow \mathbb{N}$ is an unbounded function satisfying

$$
(s t) \Psi \leq(s) \Psi+(t) \Psi+k_{\Psi}
$$

- there exist $f_{0}, f_{1}, \ldots \in \operatorname{Sym}(\Omega)$ such that $\left(f_{n}\right) \Psi>n^{2}$ for all $n \in \mathbb{N}$
- $\exists a, b \in \operatorname{Sym}(\Omega)$ s.t. $f_{n} \in\langle a, b\rangle$ and $\left|f_{n}\right| \leq 4 n+18$ and so

$$
\left(f_{n}\right) \Psi \leq(4 n+18) \cdot\left(\max \{(a) \Psi,(b) \Psi\}+k_{\Psi}\right)<n^{2}
$$

for sufficiently large n, a contradiction

- so Ψ is bounded and $\operatorname{Sym}(\Omega)$ has Bergman's Property.

Corollary

Every strongly distorted infinite semigroup has Bergman's property.

The random graph

Theorem (Erdős and Rényi '63)

There is a countable graph R such that a random countable graph (edges chosen independently with probability 1/2) is almost surely isomorphic to R.

We write $x \sim y$ to denote that the vertices x and y are adjacent.
Alice's restaurant property: A graph Γ has this property if for every disjoint finite sets U and V of vertices there exists w such that $w \sim u$ for all $u \in U$ and $w \nsim v$ for all $v \in V$.

With probability 1 a countable random graph has the Alice's restaurant property.

Any two countable graphs with the Alice's restaurant property are isomorphic (and such graphs exist).

Endomorphisms of R

A function $f: R \longrightarrow R$ is an endomorphism of R if

$$
x \sim y \quad \text { implies } \quad(x) f \sim(y) f
$$

The monoid $\operatorname{End}(R)$ of endomorphisms of R has some interesting properties:

- (Bonato-Delić-Dolinka) $\mathbb{N}^{\mathbb{N}}$ embeds into $\operatorname{End}(R)$
- (Dolinka-Delić) $\operatorname{End}(R)$ has uncountably many ideals
- (Bonato-Delić) $\operatorname{End}(R)$ has $2^{\aleph_{0}}$ primitive idempotents.
- (Dolinka-Grey-MacPhee-Mitchell-Quick) every countable group is a maximal subgroup of $\operatorname{End}(R)$ in $2^{\aleph_{0}}$ distinct \mathcal{D}-classes.

A construction...

A construction: Let Γ be any countable graph. Then define Γ^{*} to be the graph with Γ as a subgraph and extra vertices

$$
\left\{a_{F}: F \text { is a finite subset of } \Gamma\right\}
$$

and extra edges $u \sim v_{F}$ if $u \in F$.
Starting with $\Gamma_{0}=\Gamma, \Gamma_{1}=\Gamma_{0}^{*}, \ldots, \Gamma_{i+1}=\Gamma_{i}^{*}, \ldots$, we can show that:

$$
R=\bigcup_{i=0}^{\infty} \Gamma_{i} .
$$

Note that if $f: \Gamma_{0} \longrightarrow R$ is any homomorphism, then $a_{F} \mapsto a_{(F) f}$ extends f to an endomorphism of R.

Sierpiński rank of endomorphisms of R

Theorem (Mitchell-Péresse-Hyde '13)

The Sierpiński rank of $\operatorname{End}(R)$ is 2.
Proof. Let $R=\bigcup_{i=0}^{\infty} \Gamma_{i}$ where $\Gamma_{0}=\bigcup_{i=0}^{\infty} \Gamma_{0, i}$ and every $\Gamma_{0, i}=R$.

- let $f_{1}, f_{2}, \ldots \in \operatorname{End}(R)$
- $\quad a: R \longrightarrow \Gamma_{0,0}$
$b: \Gamma_{0, i} \longrightarrow \Gamma_{0, i+1}$
$c: \Gamma_{0, n} \longrightarrow R$
be an isomorphism
be an isomorphism
be defined by

$$
(x) c=(x) b^{-n} a^{-1} f_{n}
$$

- both b and c can be extended to endomorphisms of R
- So, $(x) a b^{n} \in \Gamma_{0, n}$ and so $(x) a b^{n} c=(x) a b^{n} b^{-n} a^{-1} f_{n}=(x) f_{n}$
- Again if we set $f_{0}=b$, then $b=f_{0}=a c$ and so $f_{n}=a(a c)^{n} c$.

Sierpiński rank of endomorphisms of other Fraïsse limits

國 Igor Dolinka, 'The Bergman property for endomorphism monoids of some Fras̈sé limits', Forum Mathematicum to appear.

Igor generalized our theorem about the random graph to a wide class of countably infinite ultrahomogeneous structures.

The endomorphism monoids of the Fraïsse limits of the following classes have Sierpiński rank 2:

- finite posets;
- finite semilattices;
- finite distributive lattices;
- finite Boolean algebras.

Order automorphisms of the rationals

Theorem (Hyde-Jonušas-M-Péresse '13)

The (semigroup) Sierpinski rank of $\operatorname{Aut}(\mathbb{Q})$ is 2.

Sketch of the proof (that the Sierpiński rank ≤ 8).
Let $f_{0}, f_{1}, \ldots \in \operatorname{Aut}(\mathbb{Q})$. In each of the following cases, there exist $a, b, c, d \in \operatorname{Aut}(\mathbb{Q})$ such that:

- if $\operatorname{supp}\left(f_{n}\right) \subseteq[0,1]$, then $f_{n}=\left[a^{b^{n}}, a^{b^{-n}} c\right]$
- if $\left|(x) f_{n}-x\right| \leq 1$, then $f_{n}=\left[a^{b^{2 n}}, a^{b^{-2 n}} c\right]^{d}\left[a^{b^{2 n-1}}, a^{b^{-(2 n-1)} c}\right]$
- if $\left|(x) f_{n}-x\right| \leq n$, then

$$
f_{n}=\prod_{m=\frac{(n-1) n}{2}+1}^{\frac{n(n+1)}{2}}\left[a^{b^{2 m}}, a^{b^{-2 m}} c\right]^{d}\left[a^{b^{2 m-1}}, a^{b^{-(2 m-1)} c}\right]
$$

- if the f_{n} are arbitrary, then the above equality holds.

Open problems

(1) What is the Sierpinski rank of $\operatorname{Aut}(R), \operatorname{End}(\mathbb{Q})$, the automorphism groups and endomorphism semigroups of other Fraïssé limits?
(2) If G is a group has group BP, then does G have semigroup BP? All known examples of groups with group BP also have semigroup BP.
(3) Does there exist a semigroup S and $T \leq S$ with $|S \backslash T|<\infty$ but where S has BP but T does not?

