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Finite bases

The laws (or identities) defining groups are

(1) x(yz) = (xy)z, x1 = x, and xx−1 = 1.

The symmetric group S3 satisfies the additional identities

(2) x6 = 1 and x2y2 = y2x2.

All identities true in S3 are consequences of those in (1) and (2), so S3 is
finitely based.

In fact, every finite group, ring, Lie algebra, or lattice is finitely based. Every

algebra with only 2 elements is finitely based.

An algebra A is finitely based iff the variety it generates,
V(A) = HSP(A) = Mod(ThEq(A)) is finitely first-order axiomatizable.

Words to know: algebra, identity, basis, variety.
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Lyndon’s groupoid, Murskii’s groupoid

Here is an groupoid that is not finitely based.

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 4 5 6 0 0 0
5 0 5 5 5 0 0 0
6 0 6 6 6 0 0 0

Lyndon, 1954

Here is another.
0 1 2

0 0 0 0
1 0 0 1
2 0 2 2

Murskii, 1965
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INFB

Murskii’s groupoid is inherently nonfinitely based, which means that it
belongs to no finitely based locally finite variety.

Lyndon’s groupoid is not finitely based, but not INFB.

There exist finite abelian algebras that are not finitely based, but there do not
exist exist finite abelian algebras that are INFB.

Although nonfinitely based/INFB algebras are fairly rare in a probabilistic
sense, some occur naturally:

Thm. (Sapir) The multiplicative semigroup Mn(Fq) is INFB if n > 1.

Thm. (Dolinka) The semiring of all binary relations on a set satisfying
1 < |X| <∞ is INFB.
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Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know:

subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra,

congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence,

covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Tarski’s question

Tarski asked whether there is an algorithm to determine if a finite algebra is
finitely based.

McKenzie answered the question negatively by constructing, from a Turing
machine T , a finite algebra A(T ), such that

(1) A(T ) is finitely based if T halts, while

(2) A(T ) is INFB if T does not halt.

Hence there is no algorithm to determine whether a finite algebra is finitely
based or is INFB.

Interestingly, the variety generated by A(T ) is finitely based iff it has a finite
residual bound, which means: a finite bound on the size of its subdirectly
irreducible members.

Words to know: subdirectly irreducible algebra, congruence, covering
pair/atom/monolith.

Kearnes, Szendrei, Willard Finitely based algebras



Park’s Conjecture

Park’s Conjecture. Every variety with a finite residual bound is finitely
based.

Robert Park was a student of Kirby Baker.
He made this conjecture in his 1976 PhD thesis.
It is likely that Park was motivated by Baker’s Theorem, which proves that the
statement of Park’s Conjecture is true for any variety whose members have
distributive congruence lattices.
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distributive congruence lattices.
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Baker’s Theorem+extensions, in the language of TCT
Part 1: TCT

Tame congruence theory was invented by David Hobby and Ralph McKenzie
in the mid-1980’s.

The theory explains how to assign an algebra invariant to each congruence
covering of a finite algebra, which reflects its “local polynomial behavior”.

The invariant algebras have been assigned numbers, which have nearly no
significance:

1 = a simple G-set

2 = a 1-dimensional vector space

3 = 2-element Boolean algebra (or a 2-element field)

4 = 2-element lattice

5 = 2-element semilattice
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Baker’s Theorem+extensions, in the language of TCT
Part 2: the theorem

Thm. (Baker, 1977) Park’s Conjecture is true for varieties
whose types are in the set {3, 4}.

Or, any congruence distributive variety with a finite resid-
ual bound is finitely axiomatizable.

Thm. (McKenzie, 1987) Park’s Conjecture is true for varieties
whose types are in the set {2, 3, 4}.

Or, any congruence modular variety with a finite residual
bound is finitely axiomatizable.

Thm. (Willard, 2000) Park’s Conjecture is true for varieties
whose types are in the set {3, 4, 5}.

Or, any variety omitting nontrivial abelian congruences, which
has a finite residual bound, is finitely axiomatizable.
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Proof sketches, I:

Let’s start with Baker’s Theorem that a congruence distributive (CD) variety
V with a finite residual bound is finitely axiomatizable.

1 Find a Maltsev characterization of the class of varieties being considered.

2 Use it to show that the relation Cg(a, b) ∩ Cg(c, d) = 0 is uniformly
definable throughout V , say by Ω(a, b, c, d).

3 Show that there is an “enforcing” sentence that asserts “Ω works”.

End Choose finitely many identities Σ1 of V that prove the enforcing
sentence. Axiomatize K with Σ1 and Ω(a, b, c, d)→ (a = b or c = d).
K ∩ V = VFSI = VSI . Choose finitely many identities Σ2 of V that prove
K ∩ V is the class of SI’s of V . Σ1 ∪ Σ2 axiomatizes V .
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Proof sketches, II:

Willard’s Theorem: proved the same way. The key innovations are:

1 Willard reframed the known Maltsev condition for the class of varieties
with types in {3, 4, 5} in a really new and useful way.

2 The rest of his argument is like Baker’s, but proving that the relation
Cg(a, b) ∩ Cg(c, d) = 0 is uniformly definable throughout V is harder.

McKenzie’s Theorem: starts out in a similar way, but the bulk of the proof is
based on an entirely new and rich set of ideas. The problem that forces a
change of strategy is that Cg(a, b) ∩ Cg(c, d) = 0 is not uniformly definable
throughout V . Rather, an analogous relation [Cg(a, b),Cg(c, d)] = 0 is
uniformly definable, but this fact is not strong enough on its own to follow the
template set out by Baker. (For example, if V is generated by a finite solvable
group, then the class K axiomatized by Σ1 and
[Cg(a, b),Cg(c, d)] = 0→ (a = b or c = d) is trivial, so can’t help prove the
finite axiomatizability of V .)
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Reasonable contexts for the next step

Of course, one should try to prove Park’s conjecture for varieties whose types
are in the set {2, 3, 4, 5} next. These varieties are exactly those that have a
weak difference term, which is a term d(x, y, z) such that, whenever A ∈ V
and Cg(a, b) is abelian, then d(a, b, b) = a and d(a, a, b) = b hold.
Necessarily d(x, y, z) = x− y + z on the classes of any abelian congruence of
a member of V .

There is a slightly more restrictive (but natural) condition: a term d(x, y, z) is a
difference term for V if d(x, x, y) = y holds throughout V and d(a, b, b) = a
holds when Cg(a, b) is abelian. In the language of TCT, V has a difference
term iff its types are in {2, 3, 4, 5} and type-2 minimal sets have empty tail.
This class of varieties includes all of the varieties covered by McKenzie’s and
Willard’s Theorems, but is nicer than the class of varieties with a weak
difference term because [α, β] = [β, α] for any congruences α and β on an
algebra in this kind of variety.
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Toward Park’s Conjecture for varieties with a difference
term

Thm. (K, Szendrei, Willard) If V is a variety with a difference term and V has
a finite residual bound, then V is not INFB.

The structure of the proof is similar to the proof of McKenzie’s Theorem. The
main new ingredient is a proof that [Cg(a, b),Cg(c, d)] = 0 is uniformly
definable in varieties with a difference term and a finite residual bound.

We actually prove something stronger than the above theorem, but we do not
prove that V is finitely based. We have found an obstacle to proving this,
which does not appear if type 2 is missing (as in Willard’s Theorem) or if
atomic congruences are uniformly definable (as in McKenzie’s Theorem).
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I now think Park’s Conjecture is false (even for varieties with a difference
term), but the following weakening might still be true:

A variety with a finite residual bound is not INFB.

A recent result of Kate Owens lends support to this statement:

Thm. A variety that can be shown to be INFB using the shift automorphism
method must contain an infinite subdirectly irreducible algebra.
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