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Semigroup Theory

Philosophy

Semigroups are partly algebraic and partly combinatorial.

Break them up into an algebraic bit (somebody else’s problem)

. . . and a combinatorial bit (somebody else’s problem)

Example (Krohn-Rhodes Theory)

Algebraic part: groups

Combinatorial part: aperiodic (group-free) semigroups

Interplay: wreath products

Example (“Rees Theory”)

Algebraic part: groups

Combinatorial part: eggboxes

Interplay: the Rees matrix construction
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Inverse Semigroups

Definition

A semigroup S is inverse if the idempotents commute and for every x ∈ S
there is an element y with xyx = x ;

Idea

The existence of inverses forces a strong relationship between general
elements and idempotents.

If idempotents commute then their structure is

(i) independent of the
rest of the semigroup and (ii) essentially combinatorial rather than
algebraic.

Philosophy

local structure is group-like (somebody else’s problem);

global structure is semilattice-like (somebody else’s problem);

interplay is (sometimes) manageable.
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Rule

To understand a semigroup, we should seek:

a local invertible structure;

a global combinatorial structure;

a sufficient understanding of the relationship between them.

Idea (Fountain 1979)

Replace “locally invertible” with “locally cancellative-like”.

Question

What on earth does that mean?
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Adequate Semigroups (Fountain 1979)

Definition

A semigroup S is left adequate if idempotents commute and for each
a ∈ S there is an idempotent e ∈ S such that xa = ya ⇐⇒ xe = ye.

Definition

A semigroup S is right adequate if idempotents commute and for each
a ∈ S there is an idempotent e ∈ S such that ax = ay ⇐⇒ ex = ey .

Definition

A semigroup is adequate if it is both left and right adequate.

Philosophy

local structure is “cancellative-like”;

global structure is semilattice-like;

interplay is (occasionally) manageable.
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The + and ∗ Operations

Proposition

Let S be a left adequate semigroup. For each a ∈ S there is a unique
idempotent a+ such that xa = ya if and only if xa+ = ya+.

Proposition

Let S be a right adequate semigroup. For each a ∈ S there is a unique
idempotent a∗ such that ax = ay if and only if a∗x = a∗y.

Remark

The operations x 7→ x+ and x 7→ x∗ are so fundamental that we consider
left/right/two-sided adequate semigroups as algebras of signature (2, 1) or
(2, 1, 1).
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Free Objects

Let F be an algebra in a class C of algebras.

Definition

F is free in C if there is a subset Σ ⊆ F such that every function from Σ
to an algebra M ∈ C extends uniquely to a morphism from F to M.

Definition

The cardinality of Σ (which determines F ) is a (usually the) rank of F .

Example

Free semigroups

Free groups

Free bands

Free inverse semigroups

. . .
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Free Adequate Semigroups

Fact

The class of left adequate semigroups forms a quasivariety of
(2, 1)-algebras defined by:

(xy)z = x(yz) (associativity);

e2 = e, f 2 = f =⇒ ef = fe (idempotents commute);

x+ = (x+)+;

x+x+ = x+;

xa = ya =⇒ xa+ = ya+;

xa+ = ya+ =⇒ xa = ya.

Similarly for right adequate and adequate semigroups.

Corollary

There is a free left/right/two-sided adequate semigroup of every rank.
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Back to Inverse Semigroups

For the free inverse semigroup, we have the Munn representation.

Remark

This relies heavily on the type A identities

ae = (ae)+a and ea = a(ea)∗ . . . .

Remark

. . . and applies in other contexts where these hold:

Free right type A semigroups (Fountain 1991)

Free ample semigroups (Fountain, Gomes & Gould 2007)

Free restriction categories (Cockett & Xiuzhan Guo 2006)

Question

What happens without these identities?
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Corollary

There is a free left/right/two-sided adequate semigroup of every rank.

Question

What is it?

The Story So Far

Branco, Gomes and Gould have recently studied free left and right
adequate semigroups from a structural perspective, as part of their theory
of proper adequate semigroups.

Our Aim

A geometric approach (like Munn’s) for the both the one-sided and
two-sided cases.
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Let Σ be a set (e.g. an alphabet).

Definition

A Σ-tree is a directed tree with

at least one vertex and edge

each edge labelled by an element of Σ;

a distinguished start vertex;

a distinguished end vertex;

an undirected path between every pair of vertices;

a (perhaps empty) directed path from the start to the end.

Definition

A Σ-tree is called idempotent if its start and end vertices coincide.

Definition

A base tree is a Σ-tree with a single edge and with distinct start and end
vertices.
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Morphisms

Definition

A morphism σ : X → Y of Σ-trees is a map which

takes edges to edges;

takes vertices to vertices;

preserves incidence;

preserves edge labels;

takes the start vertex to the start vertex;

takes the end vertex to the end vertex.

Definition

UT (Σ) is the set of isomorphism types of Σ-trees.

Convention

We identify the isomorphism type of a base tree with the label of its edge,
so Σ ⊆ UT (Σ).
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Algebra on Trees

Definition

Let X ,Y ∈ UT (Σ). Then

X × Y is obtained by glueing the end vertex of X to the start vertex
of Y .

X (+) is obtained by moving the end vertex of X to the start vertex.

X (∗) is obtained by moving the start vertex of X to the end vertex.

No folding! (Yet.)

Fact

UT (Σ) forms a semigroup under ×.

Warning

Idempotent trees are not idempotent!

(Yet.)
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Retracts

Definition

A retract of a Σ-tree is an idempotent morphism from X to X .

Definition

A Σ-tree is called pruned if it admits no (non-identity) retracts.

Exercise

Let X be a Σ-tree. Then there is a unique (up to isomorphism) Σ-tree
which is the image of a retract of X .

Definition

The (isomorphism type of the) unique pruned image of a retract of X is
denoted X .
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Algebra on Pruned Trees

Definition

T (Σ) is the set of isomorphism types of pruned Σ-trees.

Definition

We define operations on T (Σ) by

XY = X × Y ;

X + = X (+);

X ∗ = X (∗);

for all X ,Y ∈ T (Σ).

Theorem

The map X 7→ X is a surjective (2, 1, 1)-morphism from UT (Σ) to T (Σ).
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The Free Adequate Semigroup Revisited

Theorem

T (Σ) is the free adequate semigroup on Σ.

Mark Kambites Free Adequate Semigroups 17 / 24



Left adequate semigroups

Definition

A Σ-tree X is left adequate if every edge is orientated away from the
start vertex

(or equivalently, if there is a directed path from the start
vertex to every vertex).

Definition

LT (Σ) with pruned operations is the set of isomorphism types of pruned
left adequate Σ-trees.

Theorem

LT (Σ) is the free left adequate semigroup on Σ.

Corollary

Any (2, 1)-identity which holds in every adequate semigroup also holds
every left/right adequate semigroup.
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Monoids

Remark

If we admit the trivial Σ-tree with one vertex and no edges, then we
obtain the free left/right/two-sided adequate monoid.
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Some Elementary Corollaries

Corollary

The word problem for a finitely generated free left/right/two-sided
adequate semigroup is in NP.

Question

What more precisely is its complexity?

Corollary

One can (theoretically?!) decide whether a given identity holds in all
left/right/two-sided adequate semigroups.
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Corollary

No non-trivial free left/right/two-sided adequate semigroup is finitely
generated as a semigroup.

Corollary

Every free adequate left/right/two-sided semigroup is J -trivial (as a
semigroup).
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Inverse Semigroups as Adequate Semigroups

Remark

We can develop an analogous theory in which we

replace retracts with morphisms; and

don’t require a directed path from the start to the end.

This gives the Munn representation of the free inverse semigroup.
(Isomorphism types of morphism-free Σ-trees are in 1-1 correspondence
with Munn trees.)

Fact

There is a natural morphism from the free adequate semigroup to the
free inverse semigroup, taking x+ to xx−1 and x∗ to x−1x.

This can be interpreted as a folding operation on trees.

Likewise the morphism from the free adequate semigroup onto the
free ample semigroup.
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Residual Finiteness Properties

Definition

A function f : S → T separates X ⊆ S if x 6= y =⇒ f (x) 6= f (y) for all
x , y ∈ X .

Definition

An algebra is [fully] residually finite if every pair [finite set] of elements is
separated by a morphism to a finite algebra.

Remark

Let F be a free algebra of rank ℵ0 in a class C of algebras.

Pairs of elements in F which cannot be separated in finite quotients
correspond to identities which are satisfied in all finite algebras in C,
but not in all infinite algebras.

So F is residually finite ⇐⇒ every identity satisfied by all finite
algebras in C is also satisfied by all infinite C-algebras.
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Residual Finiteness Properties

Theorem

Free left/right adequate semigroups are (fully) residually finite

as
adequate (2, 1)-algebras.

Theorem

Every finite subset of a free left/right adequate semigroup is separated by
a Rees quotient

(“fully Rees-residually finite”)

.

Fact

Finite subsets of free adequate semigroups are not separable by Rees
quotients.

(There are elements which do not lie outside a cofinite ideal.)

Question

Are free adequate semigroups residually finite?
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