Infinite monoids as geometric objects

Robert Gray (joint work with Mark Kambites)

Semigroups and Applications Novi Sad, June 2013

Groups, monoids, and geometry

Gromov - "Infinite groups as geometric objects" International Congress of Mathematicians address in Warsaw, 1984

There are two main inter-related strands in geometric group theory:

- 1. one seeks to understand groups by studying their actions on appropriate spaces, and
- 2. one seeks understanding from the intrinsic geometry of finitely generated groups endowed with word metrics.

Groups, monoids, and geometry

Gromov - "Infinite groups as geometric objects" International Congress of Mathematicians address in Warsaw, 1984

There are two main inter-related strands in geometric group theory:

- 1. one seeks to understand groups by studying their actions on appropriate spaces, and
- 2. one seeks understanding from the intrinsic geometry of finitely generated groups endowed with word metrics.

How about monoids and semigroups?

- 1. To what extent can we gain information about finitely generated monoids by studying their actions on geometric objects?
- 2. How much algebraic information about finitely generated monoids is encoded in the geometry of their Cayley graphs?

Algebra Combinatorics

Groups

Graphs

Monoids / Semigroups

Digraphs

Algebra	Combinatorics	Geometry
Groups	Graphs	Metric spaces
Monoids / Semigroups	Digraphs	??

Algebra	Combinatorics	Geometry
Groups	Graphs	Metric spaces
Monoids / Semigroups	Digraphs	??

?? = directed metric spaces = semimetric spaces

Semimetric space = a set equipped with an asymmetric, partially-defined distance function.

Cayley graphs and the notion of quasi-isometry

```
G - group, generated by a finite set A \subseteq G,
Assume 1 \notin A, and A = A^{-1}
```

G gives rise to a metric space (G, d_A) with word metric d_A . Points: *G* Distance: $d_A(g, h)$ the minimum length of a word $a_1a_2 \cdots a_r \in A^*$ with the property that $ga_1a_2 \cdots a_r = h$.

The Cayley graph $\Gamma(G, A)$ Vertices: GEdges: $g \sim h \Leftrightarrow h = ga$ for some $a \in A$

The (?) Cayley graph of a group

Conclusion

Changing the finite generating set can result in spaces that are not isometric.

Idea: These two spaces look the same when viewed from far enough away. This idea is formalised via the notion of quasi-isometry.

Quasi-isometry for metric spaces

Definition

Let (X, d_X) and (Y, d_Y) be two metric spaces. A map $f : X \to Y$ is a quasi-isometric embedding if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that

$$\frac{1}{\lambda}d_X(a,b) - C \leq d_Y(f(a),f(b)) \leq \lambda d_X(a,b) + C,$$

for all $a, b \in X$.

Quasi-isometry for metric spaces

Definition

Let (X, d_X) and (Y, d_Y) be two metric spaces. A map $f : X \to Y$ is a quasi-isometric embedding if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that

$$\frac{1}{\lambda}d_X(a,b) - C \leq d_Y(f(a),f(b)) \leq \lambda d_X(a,b) + C,$$

for all $a, b \in X$. The metric spaces (X, d_X) and (Y, d_Y) are quasi-isometric if in addition there is a constant $D \ge 0$ such that every point in *Y* has a distance at most *D* from some point in the image f(X).

Quasi-isometry for metric spaces

Definition

Let (X, d_X) and (Y, d_Y) be two metric spaces. A map $f : X \to Y$ is a quasi-isometric embedding if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that

$$\frac{1}{\lambda}d_X(a,b) - C \leq d_Y(f(a),f(b)) \leq \lambda d_X(a,b) + C,$$

for all $a, b \in X$. The metric spaces (X, d_X) and (Y, d_Y) are quasi-isometric if in addition there is a constant $D \ge 0$ such that every point in *Y* has a distance at most *D* from some point in the image f(X).

• Quasi-isometry is an equivalence relation between metric spaces, which ignores finite details.

Quasi-isometry for finitely generated groups

Proposition

Let *A* and *B* be two finite generating sets for the group *G*. Then (G, d_A) and (G, d_B) are quasi-isometric.

The quasi-isometry class of a group

Given a finitely generated group G, the metric space (G, d_A) is well defined up to quasi-isometry by the group G alone.

In particular, given two finitely generated groups G and H, one may ask whether they are quasi-isometric or not, without reference to any specific choice of finite generating sets.

Tigers, Lions and Frogs

Tigers and lions look similar and, genetically, they have a lot on common.

Tigers and frogs on the other hand...

Tigers, Lions and Frogs

Tigers and lions look similar and, genetically, they have a lot on common.

Tigers and frogs on the other hand...

Quasi-isometric groups look similar and, algebraically, they have a lot in common.

Quasi-isometry invariants

Quasi-isometry invariants

A property (P) of finitely generated groups is said to be a quasi-isometry invariant if, whenever G_1 and G_2 are quasi-isometric finitely generated groups,

 G_1 has property (*P*) \Leftrightarrow G_2 has property (*P*).

Quasi-isometry invariants of groups include being...

(i) Finite; (ii) Infinite virtually cyclic; (iii) Finitely presented; (iv) Virtually abelian; (v) Virtually nilpotent; (vi) Virtually free; (vii) Amenable; (viii) Hyperbolic; (ix) Accessible; (x) Type of growth; (xi) Finitely presented with solvable word problem; (xii) Satisfying the homological finiteness condition F_n or the condition FP_n ; (xiii) Number of ends.

Algebra	Combinatorics	Geometry
Groups	Graphs	Metric spaces
Monoids / Semigroups	Digraphs	??

?? = directed metric spaces = semimetric spaces

Semimetric space = a set equipped with an asymmetric, partially-defined distance function.

Cayley graphs of semigroups and monoids

The bicyclic monoid $B = \langle b, c \mid bc = 1 \rangle$

Semimetric spaces

Definition (Semimetric space)

A semimetric space is a pair (X, d) where X is a set, and

$$d: X \times X \to \mathbb{R}^{\infty} = \mathbb{R}^{\ge 0} \cup \{\infty\}$$

is a function satisfying:

(i) d(x, y) = 0 if and only if x = y; and
(ii) d(x, z) ≤ d(x, y) + d(y, z);
for all x, y, z ∈ X.

Here $\mathbb{R}^{\infty} = \mathbb{R}^{\geq 0} \cup \{\infty\}$ with the obvious order, and we set

$$\infty + x = x + \infty = y\infty = \infty y = \infty$$

for all $x \in \mathbb{R}^{\infty}$ and $y \in \mathbb{R}^{\infty} \setminus \{0\}$.

Monoids as semimetric spaces

M - monoid generated by a finite set A.

M gives rise to a semimetric space (M, d_A) with word semimetric d_A . Points: M Directed distance: $d_A(x, y)$ the minimum length of a word $a_1a_2 \cdots a_r \in A^*$ with the property that $xa_1a_2 \cdots a_r = y$, or ∞ if there is no such word.

The (right) Cayley graph $\Gamma(M, A)$ Vertices: *M* Directed edges: $x \to y \Leftrightarrow y = xa$ for some $a \in A$

Quasi-isometry for semimetric spaces

Definition

Let (X, d_X) and (Y, d_Y) be two semimetric spaces. A map $f : X \to Y$ is a quasi-isometric embedding if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that

$$rac{1}{\lambda}d_X(a,b)-C\leqslant d_Y(f(a),f(b))\leqslant \lambda d_X(a,b)+C,$$

for all $a, b \in X$.

Quasi-isometry for semimetric spaces

Definition

Let (X, d_X) and (Y, d_Y) be two semimetric spaces. A map $f : X \to Y$ is a quasi-isometric embedding if there exist constants $\lambda \ge 1$ and $C \ge 0$ such that

$$\frac{1}{\lambda}d_X(a,b) - C \leqslant d_Y(f(a),f(b)) \leqslant \lambda d_X(a,b) + C,$$

for all $a, b \in X$.

The semimetric spaces (X, d_X) and (Y, d_Y) are quasi-isometric if in addition there is a constant $D \ge 0$ such that for every $y \in Y$ there exists a $z \in f(X)$ such that

$$d_Y(y,z) \leq D$$
, and $d_Y(z,y) \leq D$.

• Quasi-isometry is an equivalence relation between semimetric spaces.

Quasi-isometry for finitely generated monoids

Proposition

Let *A* and *B* be two finite generating sets for a monoid *M*. Then the semimetric space (M, d_A) is quasi-isometric to the semimetric space (M, d_B) .

The quasi-isometry class of a monoid

The semimetric space (M, d_A) is well defined up to quasi-isometry by the finitely generated monoid M alone.

In particular, given two finitely generated monoids M and N, one may ask whether they are quasi-isometric or not, without reference to any specific choice of finite generating sets.

Quasi-isometry invariants of monoids

Theorem

The following properties are all quasi-isometry invariants of finitely generated monoids:

- Finiteness, Number of right ideals;
- Being a group (for monoids), being right simple (for semigroups);
- Type of growth;
- Number of ends (in the sense of Jackson and Kilibarda (2009)).

However...

There are a number of important properties which are quasi-isometry invariants of groups, for which it is currently not known whether they are quasi-isometry invariants of monoids. Finite presentability and the word problem

Two open problems

- 1. Is finite presentability a quasi-isometry invariant of finitely generated monoids?
- 2. Is being finitely presented with solvable word problem a quasi-isometry invariant of finitely generated monoids?

Idea: Can anything be said for classes of monoids that lie between monoids and groups?

Consider monoids that are:

- 1. Left cancellative;
- 2. Have finitely many left and right ideals.

Obviously any group satisfies both (1) and (2).

Left cancellative semigroups and monoids

Left cancellativity: $ab = ac \Rightarrow b = c$. Right cancellativity, and cancellativity are defined analogously.

Interesting classes of cancellative monoids

- Divisibility monoids (Droste & Kuske (2001));
- Garside monoids; includes, spherical Artin monoids, Braid monoids of complex reflection groups etc. (Dehornoy & Paris (1999)).

One-relator monoids

- Adyan and Oganesyan (1987): Decidability of the word problem for one relator monoids is reducible to the left cancellative case.
- Motivates the development of new methods for approaching the word problem for finitely presented left cancellative monoids.

Directed 2-complexes

Directed graph

A digraph Γ consists of: *V* - vertices, *E* - directed edges, and functions $\iota, \tau: E \to V$, expressing the initial / terminal vertices of each directed edge.

A path in Γ is a sequence of composable directed edges $p = e_1 e_2 \dots e_r$ ι and τ extend to paths in the obvious way.

 $P = P(\Gamma)$ - set of all paths from Γ $p, q \in P$ are parallel, written $p \parallel q$, if $\iota p = \iota q$ and $\tau p = \tau q$.

Directed 2-complexes

Directed graph

A digraph Γ consists of: *V* - vertices, *E* - directed edges, and functions $\iota, \tau: E \to V$, expressing the initial / terminal vertices of each directed edge.

A path in Γ is a sequence of composable directed edges $p = e_1 e_2 \dots e_r$ ι and τ extend to paths in the obvious way.

 $P = P(\Gamma)$ - set of all paths from Γ $p, q \in P$ are parallel, written $p \parallel q$, if $\iota p = \iota q$ and $\tau p = \tau q$.

Directed 2-complex (following Guba & Sapir (2006)) Γ - digraph, together with *F* - set of 2-cells, and maps $[\cdot] : F \to P, [\cdot] : F \to P$, and $^{-1} : F \to F$ called top, bottom, and inverse such that

- for every $f \in F$, the paths [f] and [f] are parallel;
- ▶ ⁻¹ is an involution without fixed points, and $[f^{-1}] = [f], [f^{-1}] = [f]$ for every $f \in F$.

Directed 2-complex

2-paths in directed 2-complexes

K - a directed 2-complex, with underlying digraph Γ , and set of faces *F* The 1-paths in *K* are the paths in Γ .

Definition (2-path)

An atomic 2-path δ is a triple (p, f, q) where p, q are 1-paths, $f \in F$ and:

Define $[\delta] = p[f]q$ and $[\delta] = p[f]q$.

A 2-path in *K* is then a sequence $\delta = \delta_1 \delta_2 \dots \delta_n$ of composable atomic 2-paths, meaning $\lfloor \delta_i \rfloor = \lceil \delta_{i+1} \rceil$ for all *i*.

Define $[\delta] = [\delta_1]$ and $[\delta] = [\delta_n]$ – the top and the bottom of the 2-path δ .

Directed homotopy and simple connectedness

Directed homotopy

K - directed 2-complex, 1-paths *p*, *q* in *K* are homotopic if there is a 2-path δ in *K* such that $\lceil \delta \rceil = p$ and $\lfloor \delta \rfloor = q$. *K* is directed simply connected if for every pair $p \parallel q$ of parallel paths, *p* and *q* are homotopic in *K*.

Directed homotopy and simple connectedness

Directed homotopy

K - directed 2-complex, 1-paths *p*, *q* in *K* are homotopic if there is a 2-path δ in *K* such that $\lceil \delta \rceil = p$ and $\lfloor \delta \rfloor = q$. *K* is directed simply connected if for every pair $p \parallel q$ of parallel paths, *p* and *q* are homotopic in *K*.

Quasi-simple connectedness

 Γ - digraph, $n \in \mathbb{N}$ $K_n(\Gamma)$ = directed 2-complex with underlying digraph Γ and face set

 $F = \{(p,q) \mid p \text{ and } q \text{ are parallel paths in } \Gamma \text{ with } |p| + |q| \leq n \}$

and $\lceil (p,q) \rceil = p$, $\lfloor (p,q) \rfloor = q$ and $(p,q)^{-1} = (q,p)$.

Note: $K_n(\Gamma)$ is the natural directed analogue of the Rips complex.

• We say Γ is quasi-simply-connected if $K_n(\Gamma)$ is directed simply connected for some *n*.

Directed 2-complexes b а f_1 b а а а f_2 f_3 b b f4 b

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $[\delta] = abbaaa$.

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $[\delta] = abbaaa$.

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $|\delta| = abbaaa$.

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $|\delta| = abbaaa$.

Directed 2-complexes b а f_1 b а а а f_2 f_3 b b f4 b

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $[\delta] = abbaaa$.

Directed 2-complexes b а f_1 b а а а f_2 f_3 b b f4 b

Consider the 2-complex $K_4(\Gamma)$ where Γ - right Cayley graph of the monoid $\langle a, b | ab = ba \rangle$. Diagram illustrates a 2-path δ of length 4 in $K_4(\Gamma)$ with

$$[\delta] = aaabba$$
, and $|\delta| = abbaaa$.

Finite presentability and the word problem

Theorem

Let *S* be a left cancellative monoid generated by a finite set *A*. Then:

• *S* is finitely presented $\Leftrightarrow \Gamma(S, A)$ is quasi-simply-connected.

Proposition

The property of being quasi-simply-connected is a quasi-isometry invariant of directed graphs.

Theorem

Let *M* and *N* be left cancellative, finitely generated monoids which are quasi-isometric. Then *M* is finitely presentable \Leftrightarrow *N* is finitely presentable.

Finite presentability and the word problem

Theorem

Let *S* be a left cancellative monoid generated by a finite set *A*. Then:

• *S* is finitely presented $\Leftrightarrow \Gamma(S, A)$ is quasi-simply-connected.

Proposition

The property of being quasi-simply-connected is a quasi-isometry invariant of directed graphs.

Theorem

Let *M* and *N* be left cancellative, finitely generated monoids which are quasi-isometric. Then *M* is finitely presentable \Leftrightarrow *N* is finitely presentable.

By defining and studying Dehn functions of directed 2-complexes and their behaviour under quasi-isometry, one can show:

Theorem

Let M and N be left cancellative, finitely presentable monoids which are quasi-isometric. Then M has solvable word problem if and only if N has solvable word problem.

Monoids with finitely many left and right ideals

We established a Švarc–Milnor Lemma for groups acting on geodesic semimetric spaces. Applying this result to Schützenberger groups acting on Schützenberger graphs leads to the following.

Theorem

Let M be a finitely generated monoid with finitely many left and right ideals. Then M is finitely presented if and only if all right Schützenberger graphs of M are quasi-simply-connected.

Theorem

For finitely generated monoids with finitely many left and right ideals, finite presentability is a quasi-isometry invariant.

• Analogous result for finitely presented with solvable word problem holds.

Monoids in general

Conclusion

For certain spacial classes of monoids quasi-simple-connectedness of directed 2-complexes can be used to capture geometrically the property of being finitely presented.

For finitely generated monoids in general, quasi-simple-connectedness is far from capturing finite presentability.

Indeed, in general:

- 1. Finite presentability \Rightarrow Quasi-simple-connectedness, and
- 2. Quasi-simple-connectedness \Rightarrow Finite presentability.

Monoids in general

Quasi-simple-connectedness ⇒ Finite presentability

Example

$$\begin{split} \mathbb{N} &= \{0, 1, 2, \ldots\}, \quad \varnothing \subsetneq X \subsetneq \mathbb{N} \\ M(X) &= \langle a, b, c, d, e \mid ab^i c = ab^i d \ (i \in X), \quad ab^j c = ab^j e \ (j \notin X) \rangle. \end{split}$$

- (i) M(X) does not admit a finite presentation.
- (ii) The word problem for M(X) is solvable $\Leftrightarrow X$ is a recursive subset of \mathbb{N} .
- (iii) For any subsets X and Y of \mathbb{N} , the semigroups M(X) and M(Y) are isometric to each other, and to a directed rooted tree in which every vertex has out-degree 4 or 5.
- (iv) The Cayley graph of M(X) is quasi-simply connected, since it is a tree.

Consequences

- 1. Quasi-simple-connectedness \Rightarrow Finite presentability.
- 2. Having solvable word problem is not a quasi-isometry invariant of finitely generated monoids.

Future directions

- For arbitrary finitely generated monoids decide whether the properties of being
 - (a) finitely presented;
 - (b) finitely presented with solvable word problem,
 - are quasi-isometry invariants.
- Are they isometry invariants?
- Are there other natural classes of monoids for which (a) and (b) are quasi-isometry invariants?
- Investigate other properties from the point of view of quasi-isometry (e.g. Amenable semigroups (Day (1957)) / Følner conditions in digraphs).
- We have restricted our attention to the geometry of right Cayley graphs only. What if one considers the geometry of right *and* left Cayley graphs?