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Motivation

Various results on infinite symmetric groups and transformation
semigroups by:

Sierpiński, Banach,

Galvin, Bergman,

Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc, . . .
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Motivation

Various results on infinite symmetric groups and transformation
semigroups by:

Sierpiński, Banach,

Galvin, Bergman,

Higgins, Howie, Maltcev, Mitchell, Péresse, Ruškuc, . . .

What about other semigroups? Today: partition monoids.
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1. Transformation semigroups.

Let:

X be an infinite set,

SX = {permutations of X}
= the symmetric group on X ,

TX = {transformations of X}
= the (full) transformation semigroup on X .

Theorem (Sierpiński, Banach, 1935)

Any countable subset of TX is contained in a 2-generated
subsemigroup of TX .
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1. Transformation semigroups.

Theorem (Galvin, 1995)

Any countable subset of SX is contained in a 2-generated subgroup
of SX .

Proof: “We may assume that X = Z53 × Z× T
where |T | = |X |. . . . . . ”

“Generating countable sets of permutations” - J of LMS

MathSciNet review by Dugald Macpherson:

“The proofs are elementary but ingenious. . . ”
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Any countable subset of SX is contained in a 2-generated subgroup
of SX , where the orders of the generators are 53 and 4.
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Any countable subset of SX is contained in a 2-generated
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1. Transformation semigroups.

Theorem (Bergman, 2006)

If SX = 〈U〉, then SX = U ∪ U2 ∪ · · · ∪ Un for some n.
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1. Transformation semigroups.

Theorem (Bergman, 2006)

If SX = 〈U〉, then SX = U ∪ U2 ∪ · · · ∪ Un for some n.

Theorem (Maltcev, Mitchell, Ruškuc, 2009)

If TX = 〈U〉, then TX = U ∪ U2 ∪ · · · ∪ Un for some n.
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1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

TX = 〈SX , α, β〉 where

α =

︸ ︷︷ ︸
|X |

and β =

|X |︷ ︸︸ ︷ |X |︷ ︸︸ ︷ |X |︷ ︸︸ ︷
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1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

TX = 〈SX , α, β〉 where

α =

︸ ︷︷ ︸
|X |

and β =

|X |︷ ︸︸ ︷ |X |︷ ︸︸ ︷ |X |︷ ︸︸ ︷

Theorem (Higgins, Howie, Ruškuc, 1998)

TX = 〈SX , α, β〉 where:

α is injective and |X \ Xα| = |X |, and

β is surjective and
{
x ∈ X : |xα−1| = |X |

}
has size |X |.
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1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X | is regular, then TX = 〈SX , α, β〉 iff:

α is injective and |X \ Xα| = |X |, and

β is surjective and
{
x ∈ X : |xα−1| = |X |

}
has size |X |.
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Theorem (Higgins, Howie, Ruškuc, 1998)

If |X | is regular, then TX = 〈SX , α, β〉 iff:

α is injective and |X \ Xα| = |X |, and

β is surjective and
{
x ∈ X : |xα−1| = |X |

}
has size |X |.

γ

δ

ℵ0 ℵ1 ℵ2 ℵ3
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1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X | is regular, then TX = 〈SX , α, β〉 iff:

α is injective and |X \ Xα| = |X |, and

β is surjective and
{
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}
has size |X |.

γ

δ

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0 + ℵ1 + ℵ2 + · · · = ℵω

|X | is singular if X =
⋃

i∈I Xi with |I | < |X | and |Xi | < |X |,
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1. Transformation semigroups.

Theorem (Higgins, Howie, Ruškuc, 1998)

If |X | is regular, then TX = 〈SX , α, β〉 iff:

α is injective and |X \ Xα| = |X |, and

β is surjective and
{
x ∈ X : |xα−1| = |X |

}
has size |X |.

γ

δ

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0 + ℵ1 + ℵ2 + · · · = ℵω

|X | is singular if X =
⋃

i∈I Xi with |I | < |X | and |Xi | < |X |,

|X | is regular otherwise.
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1. Transformation semigroups.

Theorem (East, Mitchell, Péresse, 2013)

If |X | is singular, then TX = 〈SX , α, β〉 iff:

α is is surjective and |X \ Xα| = |X |, and

β is surjective and
{
x ∈ X : |xα−1| ≥ μ

}
has size |X | for all

cardinals μ < |X |.

James East Infinite partition monoids



2. Partition monoids.
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2. Partition monoids.

Let X and X ′ be disjoint sets in bijection via x �→ x ′.
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Let X and X ′ be disjoint sets in bijection via x �→ x ′.

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

}
X

}
X ′

James East Infinite partition monoids



2. Partition monoids.

Let X and X ′ be disjoint sets in bijection via x �→ x ′.

The partition monoid on X is

PX =
{
set partitions of X ∪ X ′}

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

}
X

}
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2. Partition monoids.

Let X and X ′ be disjoint sets in bijection via x �→ x ′.

The partition monoid on X is

PX =
{
set partitions of X ∪ X ′}

Eg: α =
{
{1, 3, 4′}, {2, 4}, {5, 6, 1′, 6′}, {2′, 3′}, {5′}

}
∈ P6

1 2 3 4 5 6
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}
X

}
X ′
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Let X and X ′ be disjoint sets in bijection via x �→ x ′.
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2. Partition monoids.

Let α, β ∈ PX .

α

{

β

{
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2. Partition monoids.

Let α, β ∈ PX . To calculate αβ:

(1) connect bottom of α to top of β,

α

{

β

{
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{

β

{ 1
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2. Partition monoids.

Let α, β ∈ PX . To calculate αβ:

(1) connect bottom of α to top of β,

(2) remove middle vertices and floating components,

α

{

β

{ 1
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2. Partition monoids.

Let α, β ∈ PX . To calculate αβ:

(1) connect bottom of α to top of β,

(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain αβ.

α

{

β

{ 1 2
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2. Partition monoids.

Let α, β ∈ PX . To calculate αβ:

(1) connect bottom of α to top of β,

(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain αβ.

α

{

β

{ 1 2

}
αβ

3
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2. Partition monoids.

Interesting things happen when X is infinite:

α

β

α

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0

αβα ℵω
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2. Partition monoids.

Interesting things happen when X is infinite:

α

β

α

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0 ℵ1 ℵ2 ℵ3

ℵ0

αβα ℵω

Blocks of singular cardinality can be made from smaller blocks.
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2. Partition monoids.

Interesting things happen when X is infinite:

α

β

α

2 2 2 2

2 2 2 2

2 2 2 2

αβα ℵ0
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2. Partition monoids.

Interesting things happen when X is infinite:

α

β

α

2 2 2 2

2 2 2 2

2 2 2 2

αβα ℵ0

(Countably) infinite blocks can be made from finite blocks. gy
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 where

α =

︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|

|X|
︷ ︸︸ ︷

β =

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|
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2. Partition monoids.

Proof: Let γ ∈ PX .
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2. Partition monoids.

Proof: Let γ ∈ PX .

A
︷ ︸︸ ︷

︸ ︷︷ ︸

B

C
︷ ︸︸ ︷

︸ ︷︷ ︸

D

γ
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2. Partition monoids.

Proof: Let γ ∈ PX . We’ll show that γ = απβ for some π ∈ SX .
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B

C
︷ ︸︸ ︷

︸ ︷︷ ︸

D
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2. Partition monoids.

Proof: Let γ ∈ PX . We’ll show that γ = απβ for some π ∈ SX .
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2. Partition monoids.

Some notation

Let γ ∈ PX and let µ ≤ |X | be a cardinal.

A︷ ︸︸ ︷

A︷ ︸︸ ︷

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B

C︷ ︸︸ ︷

C︷ ︸︸ ︷

︸ ︷︷ ︸
D

︸ ︷︷ ︸
D

γ

Define:

cu(γ, µ) = number of connected upper blocks of size ≥ µ,

cl(γ, µ) = number of connected lower blocks of size ≥ µ,

du(γ, µ) = number of disconnected upper blocks of size ≥ µ,

dl(γ, µ) = number of disconnected lower blocks of size ≥ µ.
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2. Partition monoids.

From theorem:

α =

︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|

|X|
︷ ︸︸ ︷

β =

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|

α is “injective”,

α is NOT “co-injective”,

β is “co-injective”,

β is NOT “injective”.
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2. Partition monoids.

From theorem:

α =

︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|

|X|
︷ ︸︸ ︷

β =

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|

Here:
cu(α, 2) = 0

α is “injective”,

α is NOT “co-injective”,

β is “co-injective”,

β is NOT “injective”.
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2. Partition monoids.
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|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|

Here:
cu(α, 2) = 0 = du(α, 1),

α is “injective”,

α is NOT “co-injective”,

β is “co-injective”,

β is NOT “injective”.
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From theorem:
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|X|

Here:
cu(α, 2) = 0 = du(α, 1),

cl(α, |X |) = |X |
α is “injective”,

α is NOT “co-injective”,

β is “co-injective”,

β is NOT “injective”.
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cu(α, 2) = 0 = du(α, 1),

cl(α, |X |) = |X | = dl(α, |X |),
α is “injective”,

α is NOT “co-injective”,

β is “co-injective”,

β is NOT “injective”.
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 if

cu(α, 2) = du(α, 1) = 0,

cl(α, |X |) = dl (α, |X |) = |X |,

cl(β, 2) = dl (β, 1) = 0,

cu(β, |X |) = du(β, |X |) = |X |.

α =

︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|
︸ ︷︷ ︸

|X|

|X|
︷ ︸︸ ︷

β =

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 if

cu(α, 2) = du(α, 1) = 0,

cl(α, |X |) + dl(α, |X |) = |X |,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

cu(β, |X |) + du(β, |X |) = |X |,

du(β, 1) = |X |.

α =

︸ ︷︷ ︸
|X|

︸ ︷︷ ︸
|X|

|X|︷ ︸︸ ︷

β =

|X|︷ ︸︸ ︷ |X|︷ ︸︸ ︷
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 if

cu(α, 2) = du(α, 1) = 0,

cl(α, 2) + dl(α, 2) = |X |,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

cu(β, |X |) + du(β, |X |) = |X |,

du(β, 1) = |X |.

α =

︸ ︷︷ ︸
≥2

︸ ︷︷ ︸
≥2

|X|︷ ︸︸ ︷

β =

|X|︷ ︸︸ ︷ |X|︷ ︸︸ ︷
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 if

cu(α, 2) = du(α, 1) = 0,

cl(α, |X |) + dl(α, |X |) = |X |,

dl(α, 1) = |X |,
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du(β, 1) = |X |.
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2. Partition monoids.

Theorem

PX = 〈SX , α, β〉 if

cu(α, 2) = du(α, 1) = 0,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

du(β, 1) = |X |,
and either

cl(α, 2) + dl(α, 2) = |X |, cu(β, |X |) + du(β, |X |) = |X |,
or

cl(α, |X |) + dl(α, |X |) = |X |, cu(β, 2) + du(β, 2) = |X |.

β =

≥2︷ ︸︸ ︷ ≥2︷ ︸︸ ︷
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2. Partition monoids.

Theorem

If X is uncountable and regular, then PX = 〈SX , α, β〉 iff

cu(α, 2) = du(α, 1) = 0,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

du(β, 1) = |X |,
and either

cl(α, 2) + dl(α, 2) = |X |, cu(β, |X |) + du(β, |X |) = |X |,
or

cl(α, |X |) + dl(α, |X |) = |X |, cu(β, 2) + du(β, 2) = |X |.

β =

≥2︷ ︸︸ ︷ ≥2︷ ︸︸ ︷
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2. Partition monoids.

Theorem

If X is countable, then PX = 〈SX , α, β〉 iff

cu(α, 2) = du(α, 1) = 0,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

du(β, 1) = |X |,
and either

cl(α, 2) + dl(α, 2) = |X |, cu(β, 2) + du(β, 3) = |X |,
or

cl(α, 2) + dl(α, 3) = |X |, cu(β, 2) + du(β, 2) = |X |.

β =

≥2︷ ︸︸ ︷ ≥2︷ ︸︸ ︷
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2. Partition monoids.

Fu1
x︷︸︸︷Fu2

x︷︸︸︷Fu3
x︷︸︸︷

︸︷︷︸
Dv1

x

︸︷︷︸
Dv2

x

︸︷︷︸
Dv3

x

︸ ︷︷ ︸⋃
z∈Zx Ez

x

δ

σ

βδ

σx
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2. Partition monoids.

Theorem

If X is singular, then PX = 〈SX , α, β〉 iff

cu(α, 2) = du(α, 1) = 0,

dl(α, 1) = |X |,

cl(β, 2) = dl(β, 1) = 0,

du(β, 1) = |X |,
and either

cl(α, 2) + dl(α, 2) = |X |, cu(β, µ) + du(β, µ) = |X |

for all cardinals µ < |X |,
or

cl(α, µ) + dl(α, µ) = |X |
for all cardinals µ < |X |,

cu(β, 2) + du(β, 2) = |X |.

2
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2. Partition monoids.

Corollary 1

Any countable subset of PX is contained in a 4-generated
subsemigroup of PX .

Proof: Follows from general results of Mitchell and Péresse, and:

any countable subset of SX is contained in a 2-generated
subsemigroup of SX (Galvin), and

PX = 〈SX , α, β〉.

2
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2. Partition monoids.

Corollary 1

Any countable subset of PX is contained in a 4-generated
subsemigroup of PX .

Proof: Let γ1, γ2, . . . ∈ PX .

Then γn = αβαnβ2α−nβ−1α−1 where:

...

X0 X1 X2

1-1 1-1 1-1α =

β =

X1 X2 X3Y1Y2Y3

γ1 γ2 γ3

1-1 1-1 1-1
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2. Partition monoids.

Corollary 2

If PX = 〈U〉, then PX = U ∪ U2 ∪ · · · ∪ Un for some n.

Proof: Follows from general results of Maltcev, Mitchell and
Ruškuc, and:

PX is “strongly distorted” (Corollary 1).
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