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The title again Czédli 2013 0′/20’

.

Coordinatization of join-distributive lattices

.

.

All lattices will be assumed to be finite!
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Preliminaries Czédli 2013 1′/19’

Semimodularity : x ≺ y implies x ∨ z ≺ y ∨ z, for ∀x, y, z ∈ L.

Slimness: J(L) is the union of two chains.

Fore example, two slim sm lattices (they are always planar):
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Trajectory (slim case) Czédli 2013 2′/18’

Trajectories of the diagram of a slim semimodular lattice: on

the set of edges (=covering pairs), the ”opposite sides of a cov-

ering square” generates an equivalence relation, whose classes

are called trajectories.
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Trajectories were intro-

duced by Czédli and E.T. Schmidt: The Jordan-Hölder theorem

with uniqueness for groups and semimodular lattices; Algebra

Universalis 66 (2011) 69–79.
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Traffic rules (slim case) Czédli 2013 3′/17’

”Traffic rules” for trajectories (slim case):

Trajectories go from left to right, from the left boundary chain

to the right one, they do not split, at most one turn and only

from northeast to southeast is permitted.
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Permutation (slim case) Czédli 2013 4′/16’

The Jordan-Hölder permutation

of the diagram of a slim sm L:

we (Cz–Schmidt, AU 2011) define

π ∈ Sn by trajectories, see

on the left; n denotes length(L).

The old definitions of πL: R.P. Stanley (1972, see also H. Abels

1991) are equivalent to ours; see Czédli and Schmidt (2013,

Acta Sci. Math, to appear), where we prove that π determines

the diagram and also the lattice (up to isomorphism)!

The advantage of trajectories: they are quite visual.
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The beauty of trajectories Czédli 2013 6′/14’

If L is slim sm, then, by the ”traffic rules”,

a maximal chain and a

trajectory always have

exactly one common edge.

Think of roads from north to south;

the locomotive crosses each road

exactly once.

Definition: the trajectories of L are beautiful iff each maximal

chain and each trajectory have exactly one common edge. Finite

lattices with this properties are the lattices we deal with!

(We allow the case where trajectories split.)

7



Join-distributivity is coming . . . Czédli 2013 8′/12’

It turns out: our lattices = {join-distributive lattices}. ≈ the

most often discovered mathematical objects!

Meet-semidistributivity law: x ∧ y = x ∧ z ⇒ x ∧ y = x ∧ (y ∨ z).

We list some equivalent definition of join-distributive lattices.

Definition. A finite lattice L is join-distributive, if one of the

following twelve (equivalent) conditions hold:
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A dozen of definitions Czédli 2013 9′/11’

• L is semimodular and meet-semidistributive. (Dilworth, 1940)

• L has unique meet-irreducible decompositions.

• For each x ∈ L, the interval [x, x∗] is distributive.

• For each x ∈ L, the interval [x, x∗] is boolean.

• The length of each maximal chain of L equals |M(L)|.
• L is semimodular and diamond-free (i.e., no M3).

• L is semimodular and has no cover-preserving M3 sublattice.

• L is a cover-preserving join-subsemilattice of a finite distribu-

tive lattice.

• L ∼= the lattice of open sets of a finite convex geometry.

• L is dually isomorphic to the lattice of closed sets of a finite

convex geometry.

• L ∼= the lattice of feasible sets of a finite antimatroid.

• (Adaricheva–Czédli) L is semimodular with beautiful trajecto-

ries.
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But we will not need: Czédli 2013 11′/9’

P.H. Edelman (1980): a pair 〈E,Φ〉 is a convex geometry, if

• E is a finite set, and Φ:P(E) → P(E) is a closure operator.

• If Φ(A) = A ∈ P(E), x, y ∈ E, x /∈ A, y /∈ A, x 6= y, and

x ∈ Φ(A ∪ {y}), then y /∈ Φ(A ∪ {x}). (This is the so-called anti-

exchange property.)

• Φ(∅) = ∅.

R. E. Jamison-Waldner (1980): a pair 〈E,F〉 is an antimatroid if

E is a finite set, and ∅ 6= F ⊆ P(E), F is union-closed,
⋃F = E,

and for each nonempty A ∈ F, ∃x ∈ A with A \ {x} ∈ F.

Complementary concepts; mutually determine each other.
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Main Theorem Czédli 2013 12′/8’

Let L be a join-distributive lattice of length n. We say that

L∗ = 〈L;C1, . . . , Ck〉 is a a join-distributive lattice (of join-width

at most k) with k-dimensional coordinate system 〈C1, . . . , Ck〉
if the Ci are maximal chains such that J(L) ⊆ C1 ∪ . . . ∪ Ck.

• The trajectories are beautiful ⇒ for each (say, the i-th) edge

(=prime interval) of C1 there exists a unique edge (say, the j-th)

of Ct such that these two edges belong to the same trajectory.

The rule i 7→ j defines a permutation π1t ∈ Sn.

• The coordinate structure of L∗ is ~π = 〈π12, . . . , π1k〉 ∈ Sk−1
n .

We denote ~π by ξ(L∗). We say that Sk−1
n is the set of k-

dimensional coordinate structures.

Main Theorem (Czédli, 2012) The map ξ:L∗ 7→ ~π is a bi-

jection from {join-distributive lattices with k-dimensional

coordinate systems} to the set Sk−1
n of k-dimensional coor-

dinate structures.
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The coordinate system is important Czédli 2013 14′/6’

Main Thm. ξ:L∗ 7→ ~π is a bijection.

Remark. The coordinate structure heavily depends on the co-

ordinate system! If L is the 8-element boolean lattice with

atoms a, b, c, then the coordinate system C1 = {0, a, a ∨ b,1},
C2 = {0, b, a ∨ b,1}, C3 = {0, c, b ∨ c,1} leads to

π12 = (12) and π13 = (13) (two transpositions), while the choice

C ′
1 = C1, C ′

2 = {0, b, b ∨ c, 1}, and C ′
3 = {0, c, a ∨ c,1} leads to

π′
12 = (132) and π′

13 = (123) (two cycles of order 3).

Open problem: Give an elegant description for the pairs 〈~π, ~σ〉 ∈
Sk−1

n × Sk−1
n that come from the same lattice with appropriate

choices of 〈C1, . . . , Ck〉. Solved only for k = 2 (the slim case).
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How to coordinatize the elements? Czédli 2013 15′/5’

Main Thm. ξ:L∗ 7→ ~π is a bijection.

What about the coordinates of the elements of L?

To answer this question, let η = ξ−1; we shall describe η.
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~π-orbits and eligible ~π-tuples Czédli 2013 16′/4’

Main Thm. ξ:L∗ 7→ ~π is a bijection. η := ξ−1.

For ~π ∈ Sk−1
n , we define η(~π) = L∗(~π) = 〈L(~π);C1(~π), . . . , Ck(~π)〉.

It is convenient to define πjt(i) = π1t(π
−1
1j (i)). Note that in the

model 〈L;C1, . . . , Ck〉, πjt is what the trajectories define between

the chains Cj and Ct.

By an eligible ~π-tuple we mean a k-tuple ~x = 〈x1, . . . , xk〉 ∈
{0,1, . . . , n}k such that πij(xi + 1) ≥ xj + 1 holds for all i, j ∈
{1, . . . , k} such that xi < n. (Roughly saying: if we enlarge a

component of ~x by 1, then its images will be big.)
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The elements are coordinatized this way Czédli 2013 18′/2’

Main Thm. ξ:L∗ 7→ ~π is a bijection. Want: η(~π) = L∗(~π).

~x ∈ {0, . . . , n − 1}k is eligible ⇐⇒ πij(xi + 1) ≥ xj + 1 if xi < n.

Definition. Let L(~π) := {eligible ~π-tuples} with the componen-

twise ordering. We have defined the lattice; the elements are

coordinatized by eligible ~π-tuples.

For i ∈ {1, . . . , k}, an eligible ~π-tuple ~x is i-minimal if for all

~y ∈ L(π), xi = yi implies ~x ≤ ~y. Let Ci(~π) be the set of all

i-minimal eligible ~π-tuples.

We have defined η(~π) = L∗(~π) = 〈L(~π);C1(~π), . . . , Ck(~π)〉.
(One has to prove that this construct works and η = ξ−1.)
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Edelman and Jamison Czédli 2013 19′/1’

Main Thm. ξ:L∗ 7→ ~π is a bijection. ~x is eligible iff πij(xi+1) ≥
xj + 1. ξ−1(~π) = 〈{eligibles,1-minimals, . . . , k-minimals}〉.

http://www.math.u-szeged.hu/∼czedli/ or arxiv.org/1208.3517;

20 pages. Later, Kira Adaricheva pointed out that my Main

Theorem is closely related to an old result of P. H. Edelman and

R. E. Jamison (1985) on convex geometries.

This connection is analyzed in a joint paper by Adaricheva and

Czédli [ arxiv.org/1210.3376 or my web site]. In this paper, we

show that my Main Theorem and the Edelman-Jamison descrip-

tion can mutually be derived from each other in less than a page.

Although the lattice-theoretical is somewhat longer, it makes

sense by the following reasons.

16



Why with Lattice Theory? Czédli 2013 20′/0’

1st, it exemplifies how Lattice Theory can be applied to other

fields of mathematics.

2nd, not only our methods and the motivations are different from

that of Edelman and Jamison, the two results are not exactly

the same even if the latter is translated to lattice theory.

3rd, trajectories led to a new characterization of join-

distributive lattices.

4th, it is not yet clear which approach can be used to attack the

open problem mentioned before. Thank you for your attention!

http://www.math.u-szeged.hu/∼czedli/
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