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Groups and semigroups

How can group theory help the study of semigroups?

If a semigroup has a large group of units, we can apply group
theory to it. But there may not be any units at all!
One area where our chances are better is the theory of
transformation semigroups, i.e. semigroups of mappings
Ω→ Ω (subsemigroups of the full transformation semigroup
T(Ω)). In a transformation semigroup G, the units are the
permutations; if there are any, they form a permutation group
G. Even if there are no units, we have a group to play with, the
normaliser of S in Sym(Ω), the set of all permutations g such
that g−1Sg = S.
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Levi–McFadden and McAlister

The following is the prototype for results of this kind. Let Sn
and Tn denote the symmetric group and full transformation
semigroup on {1, 2, . . . , n}.

Theorem
Let a ∈ Tn \ Sn, and let S be the semigroup generated by the
conjugates g−1ag for g ∈ Sn. Then

I S is idempotent-generated;
I S is regular;
I S = 〈a, Sn〉 \ Sn.

In other words, semigroups of this form, with normaliser Sn,
have very nice properties!
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The general problem

Problem

I Given a semigroup property P, for which pairs (a, G), with
a ∈ Tn \ Sn and G ≤ Sn, does the semigroup 〈g−1ag : g ∈ G〉
have property P?

I Given a semigroup property P, for which pairs (a, G) as above
does the semigroup 〈a, G〉 \G have property P?

I For which pairs (a, G) are the semigroups of the preceding parts
equal?
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Further results

The following portmanteau theorem lists some previously
known results.

Theorem

I (Levi) For any a ∈ Tn \ Sn. the semigroups 〈g−1ag : g ∈ Sn〉
and 〈g−1ag : g ∈ An〉 are equal.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is
idempotent-generated for all a ∈ Tn \ Sn if and only if G = Sn or
G = An or G is one of three specific groups.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is regular for all
a ∈ Tn \ Sn if and only if G = Sn or G = An or G is one of eight
specific groups.



Further results

The following portmanteau theorem lists some previously
known results.

Theorem

I (Levi) For any a ∈ Tn \ Sn. the semigroups 〈g−1ag : g ∈ Sn〉
and 〈g−1ag : g ∈ An〉 are equal.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is
idempotent-generated for all a ∈ Tn \ Sn if and only if G = Sn or
G = An or G is one of three specific groups.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is regular for all
a ∈ Tn \ Sn if and only if G = Sn or G = An or G is one of eight
specific groups.



Further results

The following portmanteau theorem lists some previously
known results.

Theorem

I (Levi) For any a ∈ Tn \ Sn. the semigroups 〈g−1ag : g ∈ Sn〉
and 〈g−1ag : g ∈ An〉 are equal.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is
idempotent-generated for all a ∈ Tn \ Sn if and only if G = Sn or
G = An or G is one of three specific groups.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is regular for all
a ∈ Tn \ Sn if and only if G = Sn or G = An or G is one of eight
specific groups.



Further results

The following portmanteau theorem lists some previously
known results.

Theorem

I (Levi) For any a ∈ Tn \ Sn. the semigroups 〈g−1ag : g ∈ Sn〉
and 〈g−1ag : g ∈ An〉 are equal.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is
idempotent-generated for all a ∈ Tn \ Sn if and only if G = Sn or
G = An or G is one of three specific groups.

I (JA, Mitchell, Schneider) 〈g−1ag : g ∈ G〉 is regular for all
a ∈ Tn \ Sn if and only if G = Sn or G = An or G is one of eight
specific groups.



Our first theorem

Theorem (JA, PJC)

Given k with 1 ≤ k ≤ n/2, the following are equivalent for a
subgroup G of Sn:

I for all rank k transformations a, a is regular in 〈a, G〉;
I for all rank k transformations a, 〈a, G〉 is regular;
I for all rank k transformations a, a is regular in 〈g−1ag : g ∈ G〉;
I for all rank k transformations a, 〈g−1ag : g ∈ G〉 is regular.

Moreover, we have a complete list of the possible groups G with these
properties for k ≥ 5, and partial results for smaller values.

The four equivalent properties above translate into a property
of G which we call the k-universal transversal property.
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Our second theorem

Theorem (André, JA, PJC)

We have a complete list (in terms of the rank and kernel type of a) for
pairs (a, G) for which 〈a, G〉 \G = 〈a, Sn〉 \ Sn.

As we saw, these semigroups have very nice properties.
The hypotheses of the theorem are equivalent to
“homogeneity” conditions on G: it should be transitive on
unordered sets of size equal to the rank of a, and on unordered
set partitions of shape equal to the kernel type of a, as we will
see.
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Our third theorem

Theorem (JA, PJC, Mitchell, Neunhöffer)

The semigroups 〈a, G〉 \G and 〈g−1ag : g ∈ G〉 are equal for all
a ∈ Tn \ Sn if and only if G = Sn, or G = An, or G is the trivial
group, or G is one of five specific groups.

Problem
It would be good to have a more refined version of this where the
hypothesis refers only to all maps of rank k, or just a single map a.
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Homogeneity and transitivity

A permutation group G on Ω is k-homogeneous if it acts
transitively on the set of k-element subsets of Ω, and is
k-transitive if it acts transitively on the set of k-tuples of distinct
elements of Ω.

It is clear that k-homogeneity is equivalent to
(n− k)-homogeneity, where |Ω| = n; so we may assume that
k ≤ n/2. It is also clear that k-transitivity implies
k-homogeneity.
We say that G is set-transitive if it is k-homogeneous for all k
with 0 ≤ k ≤ n. The problem of determining the set-transitive
groups was posed by von Neumann and Morgenstern in the
context of game theory; they refer to an unpublished solution
by Chevalley, but the published solution was by Beaumont and
Peterson. The set-transitive groups are the symmetric and
alternating groups, and four small exceptions with degrees
5, 6, 9, 9.
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The Livingstone–Wagner Theorem

In an elegant paper in 1964, Livingstone and Wagner showed:

Theorem
Let G be k-homogeneous, where 2 ≤ k ≤ n/2. Then

I G is (k− 1)-homogeneous;
I G is (k− 1)-transitive;
I if k ≥ 5, then G is k-transitive.

The k-homogeneous but not k-transitive groups for k = 2, 3, 4
were determined by Kantor. All this was pre-CFSG.
The k-transitive groups for k > 1 are known, but the
classification uses CFSG.
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The k-universal transversal property

Let G ≤ Sn, and k an integer smaller than n.

The group G has the k-universal transversal property, or k-ut
for short, if for every k-element subset S of {1, . . . , n} and every
k-part partition P of {1, . . . , n}, there exists g ∈ G such that Sg is
a transversal for P.

Theorem
For k ≤ n/2, the following are equivalent for a permutation group
G ≤ Sn:

I for all a ∈ Tn \ Sn with rank k, a is regular in 〈a, G〉;
I G has the k-universal transversal property.
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A related property

In order to get the equivalence of “a is regular in 〈a, G〉” and
“〈a, G〉 is regular”, we need to know that, for k ≤ n/2, a group
with the k-ut property also has the (k− 1)-ut property. This is
not at all obvious!

We go by way of a related property: G is
(k− 1, k)-homogeneous if, given any two subsets A and B of
{1, . . . , n} with |A| = k− 1 and |B| = k, there exists g ∈ G with
Ag ⊆ B.
Now the k-ut property implies (k− 1, k)-homogeneity. (Take a
partition with k parts, the singletons contained in A and all the
rest. If Bg is a transversal for this partition, then Bg ⊇ A, so
Ag−1 ⊆ B.)
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(k− 1, k)-homogeneous groups

The bulk of the argument involves these groups. We show that,
if 3 ≤ k ≤ (n− 1)/2 and G is (k− 1, k)-homogeneous, then
either G is k-homogeneous, or G is one of four small exceptions
(with k = 3, 4, 5 and n = 2k− 1).

It is not too hard to show that such a group G must be
transitive, and then primitive. Now careful consideration of the
orbital graphs shows that G must be 2-homogeneous, at which
point we invoke the classification of 2-homogeneous groups (a
consequence of CFSG).
One simple observation: if G is (k− 1, k)-homogeneous but not
(k− 1)-homogeneous of degree n, then colour one G-orbit of
(k− 1)-sets red and the others blue; by assumption, there is no
monochromatic k-set, so n is bounded by the Ramsey number
R(k− 1, k, 2). The values R(2, 3, 2) = 6 and R(3, 4, 2) = 13 are
useful here; R(4, 5, 2) is unknown, and in any case too large for
our purposes.
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The k-ut property
The 2-ut property says that every orbit on pairs contains a pair
crossing between parts of every 2-partition; that is, every
orbital graph is connected. By Higman’s Theorem, this is
equivalent to primitivity.

For 2 < k < n/2, we know that the k-ut property lies between
(k− 1)-homogeneity and k-homogeneity, with a few small
exceptions. In fact k-ut is equivalent to k-homogeneous for
k ≥ 6; we classify all the exceptions for k = 5, but for k = 3 and
k = 4 there are some groups we are unable to resolve (affine,
projective and Suzuki groups).
For large k we have:

Theorem
For n/2 < k < n, the following are equivalent:

I G has the k-universal transversal property;
I G is (k− 1, k)-homogeneous;
I G is k-homogeneous.
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Without CFSG?

In the spirit of Livingstone and Wagner, we could ask:

Problem
Without using CFSG, show any or all of the following implications:

I k-ut implies (k− 1)-ut for k ≤ n/2;
I (k− 1, k)-homogeneous implies (k− 2, k− 1)-homogeneous for

k ≤ n/2;
I k-ut (or (k− 1, k)-homogeneous) implies (k− 1)-homogeneous

for k ≤ n/2.
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Partition transitivity and homogeneity

Let λ be a partition of n (a non-increasing sequence of positive
integers with sum n). A partition of {1, . . . , n} is said to have
shape λ if the size of the ith part is the ith part of λ.

The group G is λ-transitive if, given any two (ordered)
partitions of shape λ, there is an element of G mapping each
part of the first to the corresponding part of the second. (This
notion is due to Martin and Sagan.) Moreover, G is
λ-homogeneous if there is an element of G mapping the first
partition to the second (but not necessarily respecting the order
of the parts).
Of course λ-transitivity implies λ-homogeneity, and the
converse is true if all parts of λ are distinct.
If λ = (n− t, 1, . . . , 1), then λ-transitivity and λ-homogeneity
are equivalent to t-transitivity and t-homogeneity.
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If λ = (n− t, 1, . . . , 1), then λ-transitivity and λ-homogeneity
are equivalent to t-transitivity and t-homogeneity.
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Connection with semigroups

Let G be a permutation group, and a ∈ Tn \ Sn, where r is the
rank of a, and λ the shape of the kernel partition.

Theorem
For G ≤ Sn and a ∈ Tn \ Sn, the following are equivalent:

I 〈a, G〉 \G = 〈a, Sn〉 \ Sn;
I G is r-homogeneous and λ-homogeneous.

So we need to know the λ-homogeneous groups . . .
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λ-transitivity

If the largest part of λ is greater than n/2 (say n− t, where
t < n/2), then G is λ-transitive if and only if it is t-transitive
and the group H induced on a t-set by its setwise stabiliser is
λ′-transitive, where λ′ is λ with the part n− t removed.

So if G is t-transitive, then it is λ-transitive for all such λ.
If G is t-homogeneous but not t-transitive, then t ≤ 4, and
examination of the groups in Kantor’s list gives the possible λ′

in each case.



λ-transitivity

If the largest part of λ is greater than n/2 (say n− t, where
t < n/2), then G is λ-transitive if and only if it is t-transitive
and the group H induced on a t-set by its setwise stabiliser is
λ′-transitive, where λ′ is λ with the part n− t removed.
So if G is t-transitive, then it is λ-transitive for all such λ.

If G is t-homogeneous but not t-transitive, then t ≤ 4, and
examination of the groups in Kantor’s list gives the possible λ′

in each case.



λ-transitivity

If the largest part of λ is greater than n/2 (say n− t, where
t < n/2), then G is λ-transitive if and only if it is t-transitive
and the group H induced on a t-set by its setwise stabiliser is
λ′-transitive, where λ′ is λ with the part n− t removed.
So if G is t-transitive, then it is λ-transitive for all such λ.
If G is t-homogeneous but not t-transitive, then t ≤ 4, and
examination of the groups in Kantor’s list gives the possible λ′

in each case.



So what remains is to show that, if G is λ-transitive but not Sn
or An, then λ must have a part greater than n/2.

If λ 6= (n), (n− 1, 1), then G is primitive.
If n ≥ 8, then by Bertrand’s Postulate, there is a prime p with
n/2 < p ≤ n− 3. If there is no part of λ which is at least p, then
the number of partitions of shape λ (and hence the order of G)
is divisible by p. A theorem of Jordan now shows that G is
symmetric or alternating.
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λ-homogeneity

The classification of λ-homogeneous but not λ-transitive
groups is a bit harder. We have to use

I a little character theory to show that either G fixes a point
and is transitive on the rest, or G is transitive;

I the argument using Bertrand’s postulate and Jordan’s
theorem as before;

I CFSG (to show that G cannot be more than
5-homogeneous if it is not Sn or An).

The outcome is a complete list of such groups.
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The third theorem

Our third theorem, the classification of groups G such that
〈g−1ag : g ∈ G〉 = 〈a, G〉 \G for all a ∈ Tn \ Sn) is a little
different; although permutation group techniques are essential
in the proof, we didn’t find a simple combinatorial condition
on G which is equivalent to this property.

So I do not propose to discuss the proof here.
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I will end the talk with a brief report on synchronization.

Motivated by automata theory, we say that a transformation
semigroup S is synchronizing if it contains an element of rank 1.
There is a single obstruction to synchronization, which we now
discuss.
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Graph homomorphisms
All graphs here are undirected simple graphs (no loops or
multiple edges).

A homomorphism from a graph X to a graph Y is a map f from
the vertex set of X to the vertex set of Y which carries edges to
edges. (We don’t specify what happens to a non-edge; it may
map to a non-edge, or to an edge, or collapse to a vertex.) An
endomorphism of a graph X is a homomorphism from X to
itself.
Let Kr be the complete graph with r vertices. The clique
number ω(X) of X is the size of the largest complete subgraph,
and the chromatic number χ(X) is the least number of colours
required for a proper colouring of the vertices (adjacent vertices
getting different colours).

I There is a homomorphism from Kr to X if and only if
ω(X) ≥ r.

I There is a homomorphism from X to Kr if and only if
χ(X) ≤ r.
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Graphs and transformation semigroups

There are correspondences in both directions between these
objects (not quite functorial, or a Galois correspondence, sadly!)

First, any graph X has an endomorphism semigroup End(X).
In the other direction, given a transformation semigroup S on
Ω, its graph Gr(S) has Ω as vertex set, two vertices v and w
being joined if and only if there is no element of S which maps
v and w to the same place.

I Gr(S) is complete if and only if S ≤ Sn;
I Gr(S) is null if and only if S is synchronizing;
I S ≤ End(Gr(S)) for any S ≤ Tn;
I ω(Gr(S)) = χ(Gr(S)); this is equal to the minimum rank

of an element of S.
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The main theorem

Theorem
A transformation monoid S on Ω is non-synchronizing if and only if
there is a non-null graph X on the vertex set Ω with ω(X) = χ(X)
and S ≤ End(X).

In the reverse direction, the endomorphism monoid of a
non-null graph cannot be synchronizing, since edges can’t be
collapsed. In the forward direction, take X = Gr(S); there is
some straightforward verification to do.
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Maps synchronized by groups

Let G ≤ Sn and a ∈ Tn \ Sn. We say that G synchronizes a if
〈a, G〉 is synchronizing.

By abuse of language, we say that G is synchronizing if it
synchronizes every element of Tn \ Sn.
Rystsov showed:

Theorem
A permutation group G of degree n is primitive if and only if it
synchronizes every map of rank n− 1.
So a synchronizing group must be primitive.
JA and I have recently improved this: a primitive group
synchronizes every map of rank n− 2. The key tool in the proof
is graph endomorphisms.
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Araújo’s conjecture

The biggest open problem in this area is the following. A map
a ∈ Tn is non-uniform if its kernel classes are not all of the same
size.

Conjecture

A primitive permutation group synchronizes every non-uniform map.
We have some small results about this but are far from a proof!
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Araújo’s conjecture

The biggest open problem in this area is the following. A map
a ∈ Tn is non-uniform if its kernel classes are not all of the same
size.

Conjecture

A primitive permutation group synchronizes every non-uniform map.
We have some small results about this but are far from a proof!



Synchronizing groups

Recall that G is synchronizing if it synchronizes every element
of Tn \ Sn.

A 2-homogeneous group is synchronizing, and a synchronizing
group is primitive (indeed, is basic in the O’Nan–Scott
classification, i.e. does not preserve a Cartesian power
structure, i.e. is not contained in a wreath product with the
product action). So it is affine, diagonal or almost simple.
Neither of these implications reverses.
Also, G is synchronizing if and only if there is no G-invariant
graph, not complete or null, with clique number equal to
chromatic number.
We are a long way from a classification of synchronizing
groups. The attempts to classify them lead to some interesting
and difficult problems in extremal combinatorics, finite
geometry, computation, etc. But that is another talk!
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