Prime Maltsev Conditions

Libor Barto

joint work with Jakub Opršal

Charles University in Prague

NSAC 2013, June 7, 2013

- (Part 1) Interpretations
- (Part 2) Lattice of interpretability
- (Part 3) Prime filters
- (Part 4) Syntactic approach
- (Part 4) Relational approach

(Part 1) Interpretations

Interpretation $\mathcal{V} \to \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W} , which sends variables to the same variables and preserves identities.

Interpretation $\mathcal{V} \to \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W} , which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Interpretation $\mathcal{V} \to \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W} , which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Example:

- \mathcal{V} given by a single ternary operation symbol m and
- the identity $m(x, y, y) \approx m(y, y, x) \approx x$

Interpretation $\mathcal{V} \to \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W} , which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Example:

- \mathcal{V} given by a single ternary operation symbol m and
- the identity $m(x, y, y) \approx m(y, y, x) \approx x$
- $f: \mathcal{V} \to \mathcal{W}$ is determined by m' = f(m)
- m' must satisfy $m'(x, y, y) \approx m(y, y, x) \approx x$

Exmaple: Unique interpretation from $\mathcal{V} = Sets$ to any \mathcal{W}

Exmaple: Unique interpretation from $\mathcal{V} = Sets$ to any \mathcal{W}

Example: $\mathcal{V} = Semigroups$, $\mathcal{W} = Sets$, $f : x \cdot y \mapsto x$ is an interpretation

Exmaple: Unique interpretation from $\mathcal{V} = Sets$ to any \mathcal{W}

Example: $\mathcal{V} = Semigroups$, $\mathcal{W} = Sets$, $f : x \cdot y \mapsto x$ is an interpretation

Example: Assume \mathcal{V} is idempotent. No interpretation $\mathcal{V} \to Sets$ equivalent to the existence of a Taylor term in \mathcal{V}

Interpretation between algebras

 $\boldsymbol{A}, \; \boldsymbol{B}: \; \text{algebras}$

$\textbf{A}, \ \textbf{B}: \ \text{algebras}$

Interpretation $A \to B$: map from the term operations of A to term operations of B which maps projections to projections and preserves composition

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

Inclusion (A): when B contains A

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

- Inclusion (A): when B contains A
- Diagonal map (P): when $\mathbf{B} = \mathbf{A}^n$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

- Inclusion (A): when B contains A
- Diagonal map (P): when $\mathbf{B} = \mathbf{A}^n$
- Restriction to B (S): when $\mathbf{B} \leq \mathbf{A}$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

- Inclusion (A): when B contains A
- Diagonal map (P): when $\mathbf{B} = \mathbf{A}^n$
- Restriction to B (S): when $\mathbf{B} \leq \mathbf{A}$
- Quotient modulo \sim (H): when ${f B}={f A}/\sim$

Interpretation $A\to B\colon$ map from the term operations of A to term operations of B which maps projections to projections and preserves composition

- ▶ Interpretations $A \rightarrow B$ essentially the same as interpretations $HSP(A) \rightarrow HSP(B)$
- \blacktriangleright Depends only on the clone of ${\bf A}$ and the clone of ${\bf B}$

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when B contains A
- Diagonal map (P): when $\mathbf{B} = \mathbf{A}^n$
- Restriction to B (S): when $\mathbf{B} \leq \mathbf{A}$
- \blacktriangleright Quotient modulo \sim (H): when $\textbf{B}=\textbf{A}/\sim$

Birkhoff theorem $\Rightarrow \forall$ interpretation is of the form $A \circ H \circ S \circ P$.

Theorem (B, 2006)

The category of varieties and interpretations is as complicated as it can be.

For instance: every small category is a full subcategory of it

(Part 2) Lattice of Interpretability Neumann 74 Garcia, Taylor 84

 $\mathcal{V} \leq \mathcal{W}: \text{ if } \exists \text{ interpretation } \mathcal{V} \rightarrow \mathcal{W}$

This is a quasiorder

 $\mathcal{V} \leq \mathcal{W}: \text{ if } \exists \text{ interpretation } \mathcal{V} \rightarrow \mathcal{W}$

This is a quasiorder

Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.

 \leq modulo \sim is a poset, in fact a lattice:

 $\mathcal{V} \leq \mathcal{W}: \text{ if } \exists \text{ interpretation } \mathcal{V} \rightarrow \mathcal{W}$

This is a quasiorder

Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.

 \leq modulo \sim is a poset, in fact a lattice:

The lattice L of intepretability types of varieties

 $\mathcal{V} \leq \mathcal{W}: \text{ if } \exists \text{ interpretation } \mathcal{V} \rightarrow \mathcal{W}$

This is a quasiorder

Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.

 \leq modulo \sim is a poset, in fact a lattice:

The lattice L of intepretability types of varieties

- ▶ V ≤ W iff W satisfies the "strong Maltsev" condition determined by V
- i.e. $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} gives a stronger condition than \mathcal{V}

 $\mathcal{V} \leq \mathcal{W}: \text{ if } \exists \text{ interpretation } \mathcal{V} \rightarrow \mathcal{W}$

This is a quasiorder

Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.

 \leq modulo \sim is a poset, in fact a lattice:

The lattice L of intepretability types of varieties

- ▶ V ≤ W iff W satisfies the "strong Maltsev" condition determined by V
- i.e. $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} gives a stronger condition than \mathcal{V}

►
$$\mathbf{A} \leq \mathbf{B}$$
 iff $Clo(\mathbf{B}) \in AHSP Clo(\mathbf{A})$

 $\mathcal{V} \lor \mathcal{W}$:

Disjoint union of signatures of ${\mathcal V}$ and ${\mathcal W}$ and identities

 $\mathcal{V} \lor \mathcal{W}$:

Disjoint union of signatures of ${\mathcal V}$ and ${\mathcal W}$ and identities

 $\mathbf{A} \wedge \mathbf{B}$ (\mathbf{A} and \mathbf{B} are clones)

Base set = $A \times B$ operations are $f \times g$, where f (resp. g) is an operation of **A** (resp. **B**)

► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).

- ► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)

- ► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- Open problem: which lattices embed into L?

- ► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- **Open problem:** which lattices embed into *L*?
- Many important classes of varieties are filters in L: congruence permutable/n-permutable/distributive/modular...varieties; clones with CSP in P/NL/L, ...

- ► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- **Open problem:** which lattices embed into *L*?
- Many important classes of varieties are filters in L: congruence permutable/n-permutable/distributive/modular...varieties; clones with CSP in P/NL/L, ...
- Many important theorems talk (indirectly) about (subposets of) L

- ► Has the bottom element 0 = Sets = Semigroups and the top element (x ≈ y).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- **Open problem:** which lattices embed into *L*?
- Many important classes of varieties are filters in L: congruence permutable/n-permutable/distributive/modular...varieties; clones with CSP in P/NL/L, ...
- Many important theorems talk (indirectly) about (subposets of) L
 - Every nonzero locally finite idempotent variety is above a single nonzero variety Siggers
 - ► NU = EDGE ∩ CD (as filters) Berman, Idziak, Marković, McKenzie, Valeriote, Willard
 - \blacktriangleright no finite member of CD \setminus NU is finitely related B

(Part 3) Prime filters

Which important filters F are prime? $(\mathcal{V} \lor \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F$).

Which important filters F are prime? $(\mathcal{V} \lor \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F$).

Examples

- NU is not prime (NU = EDGE \cap CD)
- CD is not prime (CD = CM \cap SD(\wedge))

Which important filters F are prime? $(\mathcal{V} \lor \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F$).

Examples

- NU is not prime (NU = EDGE \cap CD)
- CD is not prime (CD = CM \cap SD(\wedge))

Question: congruence permutable/*n*-permutable (fix n)/*n*-permutable (some n)/modular?

Which important filters F are prime? $(\mathcal{V} \lor \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F$).

Examples

- NU is not prime (NU = EDGE \cap CD)
- CD is not prime (CD = CM \cap SD(\wedge))

Question: congruence permutable/*n*-permutable (fix n)/*n*-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the category theory I was doing, I should start with it

(Part 4) Syntactic approach

$\mathcal V$ is congruence permutable

iff any pair of congruences of a member of \mathcal{V} permutes iff \mathcal{V} has a Maltsev term $m(x, y, y) \approx m(y, y, x) \approx x$

${\mathcal V}$ is congruence permutable

iff any pair of congruences of a member of $\ensuremath{\mathcal{V}}$ permutes

iff $\mathcal V$ has a Maltsev term $m(x, y, y) \approx m(y, y, x) \approx x$

Theorem (Tschantz, unpublished)

The filter of congruence permutable varieties is prime

${\mathcal V}$ is congruence permutable

iff any pair of congruences of a member of $\ensuremath{\mathcal{V}}$ permutes

iff $\mathcal V$ has a Maltsev term $\mathit{m}(x,y,y) \approx \mathit{m}(y,y,x) \approx x$

Theorem (Tschantz, unpublished)

The filter of congruence permutable varieties is prime

Unfortunately

- The proof is complicated, long and technical
- Does not provide much insight
- Seems close to impossible to generalize

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c : F_{\mathcal{V}}(X) \to X$ such that c(x) = x for all $x \in X$ and

$$\forall \ f,g \in F_{\mathcal{V}}(X) \ \forall \ \alpha \in A \ f \ \overline{\alpha} \ g \Rightarrow c(f) \ \alpha \ c(g)$$

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c : F_{\mathcal{V}}(X) \to X$ such that c(x) = x for all $x \in X$ and

$$\forall \ f,g \in F_{\mathcal{V}}(X) \ \forall \ \alpha \in A \ f \ \overline{\alpha} \ g \Rightarrow c(f) \ \alpha \ c(g)$$

Example:

•
$$X = \{x, y, z\}, A = \{xy|z, x|yz\}$$

• $F_{\mathcal{V}}(X)$ = ternary terms modulo identities of \mathcal{V} ,

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c : F_{\mathcal{V}}(X) \to X$ such that c(x) = x for all $x \in X$ and

$$\forall f,g \in F_{\mathcal{V}}(X) \ \forall \ \alpha \in A \ f \ \overline{\alpha} \ g \Rightarrow c(f) \ \alpha \ c(g)$$

Example:

•
$$X = \{x, y, z\}, A = \{xy|z, x|yz\}$$

• $F_{\mathcal{V}}(X)$ = ternary terms modulo identities of \mathcal{V} ,

► A-colorability means If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in xy|z$ If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x|yz$

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c : F_{\mathcal{V}}(X) \to X$ such that c(x) = x for all $x \in X$ and

$$\forall \ f,g \in F_{\mathcal{V}}(X) \ \forall \ \alpha \in A \ f \ \overline{\alpha} \ g \Rightarrow c(f) \ \alpha \ c(g)$$

Example:

- $X = \{x, y, z\}, A = \{xy|z, x|yz\}$
- $F_{\mathcal{V}}(X)$ = ternary terms modulo identities of \mathcal{V} ,
- ► A-colorability means If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in xy|z$ If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x|yz$
- ▶ If V has a Maltsev term then it is not A-colorable

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c : F_{\mathcal{V}}(X) \to X$ such that c(x) = x for all $x \in X$ and

$$\forall \ f,g \in F_{\mathcal{V}}(X) \ \forall \ \alpha \in A \ f \ \overline{\alpha} \ g \Rightarrow c(f) \ \alpha \ c(g)$$

Example:

- $X = \{x, y, z\}, A = \{xy|z, x|yz\}$
- $F_{\mathcal{V}}(X)$ = ternary terms modulo identities of \mathcal{V} ,
- A-colorability means If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in xy|z$ If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x|yz$
- If \mathcal{V} has a Maltsev term then it is not A-colorable
- The converse is also true

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A = \dots$
- \mathcal{V} is congruence *n*-permutable iff \mathcal{V} is *A*-colorable for $A = \dots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A = \dots$

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A = \dots$
- \mathcal{V} is congruence *n*-permutable iff \mathcal{V} is *A*-colorable for $A = \dots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A = \dots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are **linear** and not congruence permutable/*n*-permutable/modular is not congruence permutable/...
- If the filter of ... is not prime then the counterexample must be complicated in some sense

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A = \dots$
- \mathcal{V} is congruence *n*-permutable iff \mathcal{V} is *A*-colorable for $A = \dots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A = \dots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are linear and not congruence permutable/n-permutable/modular is not congruence permutable/...
- If the filter of ... is not prime then the counterexample must be complicated in some sense

Pros and cons

- + proofs are simple and natural
- works (so far) only for linear identities

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A = \dots$
- \mathcal{V} is congruence *n*-permutable iff \mathcal{V} is *A*-colorable for $A = \dots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A = \dots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are linear and not congruence permutable/n-permutable/modular is not congruence permutable/...
- If the filter of ... is not prime then the counterexample must be complicated in some sense

Pros and cons

- + proofs are simple and natural
- works (so far) only for linear identities

Open problem: For some natural class of filters, is it true that *F* is prime iff members of *F* can be described by *A*-colorability for some *A*?

(Part 5) Relational approach

(pp)-interpretation between relational structures

Every clone \bm{A} is equal to $\mathsf{Pol}(\mathbb{A})$ for some relational structure $\mathbb{A},$ namely $\mathbb{A}=\mathsf{Inv}(\bm{A})$

 $\textbf{A} \leq \textbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$

pp-interpretation = first order interpretation from logic where only $\exists,=,\wedge$ are allowed

 $\textbf{A} \leq \textbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$

pp-interpretation = first order interpretation from logic where only $\exists,=,\wedge$ are allowed

Examples of pp-interpretations

pp-definitions

 $\textbf{A} \leq \textbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$

pp-interpretation = first order interpretation from logic where only $\exists,=,\wedge$ are allowed

Examples of pp-interpretations

- pp-definitions
- induced substructures on a pp-definable subsets

 $\textbf{A} \leq \textbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$

pp-interpretation = first order interpretation from logic where only $\exists,=,\wedge$ are allowed

Examples of pp-interpretations

- pp-definitions
- induced substructures on a pp-definable subsets
- Cartesian powers of structures
- other powers

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

- Much easier!
- Proofs make sense.

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

- Much easier!
- Proofs make sense.

Theorem

If V, W are not permutable/n-permutable for some n/modular and (*) then neither is $V \lor W$

- (*) = locally finite idempotent
- ▶ for *n*-permutability (*) = locally finite, or (*) = idempotent Valeriote, Willard
- ► for modularity, it follows form the work of McGarry, Valeriote