Prime Maltsev Conditions

Libor Barto
joint work with Jakub Opršal

Charles University in Prague
NSAC 2013, June 7, 2013

Outline

- (Part 1) Interpretations
- (Part 2) Lattice of interpretability
- (Part 3) Prime filters
- (Part 4) Syntactic approach
- (Part 4) Relational approach

(Part 1) Interpretations

Interpretations between varieties

\mathcal{V}, \mathcal{W} : varieties of algebras

Interpretations between varieties

\mathcal{V}, \mathcal{W} : varieties of algebras
Interpretation $\mathcal{V} \rightarrow \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W}, which sends variables to the same variables and preserves identities.

Interpretations between varieties

\mathcal{V}, \mathcal{W} : varieties of algebras
Interpretation $\mathcal{V} \rightarrow \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W}, which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Interpretations between varieties

\mathcal{V}, \mathcal{W} : varieties of algebras
Interpretation $\mathcal{V} \rightarrow \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W}, which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Example:

- \mathcal{V} given by a single ternary operation symbol m and
- the identity $m(x, y, y) \approx m(y, y, x) \approx x$

Interpretations between varieties

\mathcal{V}, \mathcal{W} : varieties of algebras
Interpretation $\mathcal{V} \rightarrow \mathcal{W}$: mapping from terms of \mathcal{V} to terms of \mathcal{W}, which sends variables to the same variables and preserves identities.

Determined by values on basic operations

Example:

- \mathcal{V} given by a single ternary operation symbol m and
- the identity $m(x, y, y) \approx m(y, y, x) \approx x$
- $f: \mathcal{V} \rightarrow \mathcal{W}$ is determined by $m^{\prime}=f(m)$
- m^{\prime} must satisfy $m^{\prime}(x, y, y) \approx m(y, y, x) \approx x$

Interpretation between varieties

Exmaple: Unique interpretation from $\mathcal{V}=$ Sets to any \mathcal{W}

Interpretation between varieties

Exmaple: Unique interpretation from $\mathcal{V}=$ Sets to any \mathcal{W}
Example: $\mathcal{V}=$ Semigroups, $\mathcal{W}=$ Sets, $f: x \cdot y \mapsto x$ is an interpretation

Interpretation between varieties

Exmaple: Unique interpretation from $\mathcal{V}=$ Sets to any \mathcal{W}
Example: $\mathcal{V}=$ Semigroups, $\mathcal{W}=$ Sets, $f: x \cdot y \mapsto x$ is an interpretation

Example: Assume \mathcal{V} is idempotent. No interpretation $\mathcal{V} \rightarrow$ Sets equivalent to the existence of a Taylor term in \mathcal{V}

Interpretation between algebras

A, B: algebras

Interpretation between algebras

A, B: algebras
Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

Interpretation between algebras

A, B: algebras
Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \operatorname{HSP}(\mathbf{B})$

Interpretation between algebras

A, B: algebras
Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \operatorname{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations A \rightarrow B essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations A \rightarrow B essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when \mathbf{B} contains \mathbf{A}

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when \mathbf{B} contains \mathbf{A}
- Diagonal map (P): when $\mathbf{B}=\mathbf{A}^{n}$

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when \mathbf{B} contains \mathbf{A}
- Diagonal map (P): when $\mathbf{B}=\mathbf{A}^{n}$
- Restriction to $B(\mathrm{~S})$: when $\mathbf{B} \leq \mathbf{A}$

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when \mathbf{B} contains \mathbf{A}
- Diagonal map (P): when $\mathbf{B}=\mathbf{A}^{n}$
- Restriction to $B(\mathrm{~S})$: when $\mathbf{B} \leq \mathbf{A}$
- Quotient modulo $\sim(H)$: when $\mathbf{B}=\mathbf{A} / \sim$

Interpretation between algebras

A, B: algebras

Interpretation $\mathbf{A} \rightarrow \mathbf{B}$: map from the term operations of \mathbf{A} to term operations of \mathbf{B} which maps projections to projections and preserves composition

- Interpretations $\mathbf{A} \rightarrow \mathbf{B}$ essentially the same as interpretations $\operatorname{HSP}(\mathbf{A}) \rightarrow \mathrm{HSP}(\mathbf{B})$
- Depends only on the clone of \mathbf{A} and the clone of \mathbf{B}

Examples of interpretations between clones $\mathbf{A} \rightarrow \mathbf{B}$:

- Inclusion (A): when \mathbf{B} contains \mathbf{A}
- Diagonal map (P): when $\mathbf{B}=\mathbf{A}^{n}$
- Restriction to $B(\mathrm{~S})$: when $\mathbf{B} \leq \mathbf{A}$
- Quotient modulo $\sim(H)$: when $\mathbf{B}=\mathbf{A} / \sim$

Birkhoff theorem $\Rightarrow \forall$ interpretation is of the form $A \circ H \circ S \circ P$.

Interpretations are complicated

Theorem (B, 2006)

The category of varieties and interpretations is as complicated as it can be.

For instance: every small category is a full subcategory of it

(Part 2)
 Lattice of Interpretability

Neumann 74

Garcia, Taylor 84

The lattice L

$\mathcal{V} \leq \mathcal{W}:$ if \exists interpretation $\mathcal{V} \rightarrow \mathcal{W}$
This is a quasiorder

The lattice L

$\mathcal{V} \leq \mathcal{W}:$ if \exists interpretation $\mathcal{V} \rightarrow \mathcal{W}$
This is a quasiorder
Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.
\leq modulo \sim is a poset, in fact a lattice:

The lattice L

$\mathcal{V} \leq \mathcal{W}:$ if \exists interpretation $\mathcal{V} \rightarrow \mathcal{W}$
This is a quasiorder
Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.
\leq modulo \sim is a poset, in fact a lattice:
The lattice L of intepretability types of varieties

The lattice L

$\mathcal{V} \leq \mathcal{W}$: if \exists interpretation $\mathcal{V} \rightarrow \mathcal{W}$
This is a quasiorder
Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.
\leq modulo \sim is a poset, in fact a lattice:
The lattice L of intepretability types of varieties

- $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} satisfies the "strong Maltsev" condition determined by \mathcal{V}
- i.e. $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} gives a stronger condition than \mathcal{V}

The lattice L

$\mathcal{V} \leq \mathcal{W}$: if \exists interpretation $\mathcal{V} \rightarrow \mathcal{W}$
This is a quasiorder
Define $\mathcal{V} \sim \mathcal{W}$ iff $\mathcal{V} \leq \mathcal{W}$ and $\mathcal{W} \leq \mathcal{V}$.
\leq modulo \sim is a poset, in fact a lattice:
The lattice L of intepretability types of varieties

- $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} satisfies the "strong Maltsev" condition determined by \mathcal{V}
- i.e. $\mathcal{V} \leq \mathcal{W}$ iff \mathcal{W} gives a stronger condition than \mathcal{V}
- $\mathbf{A} \leq \mathbf{B}$ iff $\mathrm{Clo}(\mathbf{B}) \in A H S P \mathrm{Clo}(\mathbf{A})$

Meet and joins in L

$\mathcal{V} \vee \mathcal{W}:$
Disjoint union of signatures of \mathcal{V} and \mathcal{W} and identities

Meet and joins in L

$\mathcal{V} \vee \mathcal{W}:$
Disjoint union of signatures of \mathcal{V} and \mathcal{W} and identities
$\mathbf{A} \wedge \mathbf{B}$ (\mathbf{A} and \mathbf{B} are clones)
Base set $=A \times B$
operations are $f \times g$, where f (resp. g) is an operation of \mathbf{A} (resp. B)

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element $(x \approx y)$.

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element ($x \approx y$).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element ($x \approx y$).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- Open problem: which lattices embed into L?

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element ($x \approx y$).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- Open problem: which lattices embed into L?
- Many important classes of varieties are filters in L: congruence permutable/ n-permutable/distributive/modular. . . varieties; clones with CSP in P/NL/L, ...

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element ($x \approx y$).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- Open problem: which lattices embed into L ?
- Many important classes of varieties are filters in L: congruence permutable/n-permutable/distributive/modular. . . varieties; clones with CSP in P/NL/L, ...
- Many important theorems talk (indirectly) about (subposets of) L

About L

- Has the bottom element $0=$ Sets $=$ Semigroups and the top element ($x \approx y$).
- Every poset embeds into L (follows from the theorem mentioned; known before Barkhudaryan, Trnková)
- Open problem: which lattices embed into L?
- Many important classes of varieties are filters in L: congruence permutable/n-permutable/distributive/modular. . . varieties; clones with CSP in P/NL/L, ...
- Many important theorems talk (indirectly) about (subposets of) L
- Every nonzero locally finite idempotent variety is above a single nonzero variety Siggers
- NU $=\mathrm{EDGE} \cap \mathrm{CD}$ (as filters) Berman, Idziak, Marković, McKenzie, Valeriote, Willard
- no finite member of $C D \backslash N U$ is finitely related B

$$
\begin{gathered}
\text { (Part 3) } \\
\text { Prime filters }
\end{gathered}
$$

The problem

Question
Which important filters F are prime? $(\mathcal{V} \vee \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F)$.

The problem

Question
Which important filters F are prime? $(\mathcal{V} \vee \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F)$.

Examples

- NU is not prime (NU = EDGE $\cap C D)$
- $C D$ is not prime $(C D=C M \cap S D(\wedge))$

The problem

Question

Which important filters F are prime? $(\mathcal{V} \vee \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F)$.

Examples

- NU is not prime (NU = EDGE $\cap C D)$
- CD is not prime ($C D=C M \cap S D(\wedge)$)

Question: congruence permutable/n-permutable (fix n)/n-permutable (some n)/modular?

The problem

Question

Which important filters F are prime? $(\mathcal{V} \vee \mathcal{W} \in F \Rightarrow \mathcal{V} \in F$ or $\mathcal{W} \in F)$.

Examples

- NU is not prime ($\mathrm{NU}=\mathrm{EDGE} \cap \mathrm{CD}$)
- CD is not prime ($C D=C M \cap S D(\wedge)$)

Question: congruence permutable/n-permutable (fix n)/n-permutable (some n)/modular?

My motivation: Very basic syntactic question, close to the category theory I was doing, I should start with it

(Part 4)
 Syntactic approach

Congruence permutable varieties

\mathcal{V} is congruence permutable
iff any pair of congruences of a member of \mathcal{V} permutes
iff \mathcal{V} has a Maltsev term $m(x, y, y) \approx m(y, y, x) \approx x$

Congruence permutable varieties

\mathcal{V} is congruence permutable
iff any pair of congruences of a member of \mathcal{V} permutes
iff \mathcal{V} has a Maltsev term $m(x, y, y) \approx m(y, y, x) \approx x$

Theorem (Tschantz, unpublished)
The filter of congruence permutable varieties is prime

Congruence permutable varieties

\mathcal{V} is congruence permutable
iff any pair of congruences of a member of \mathcal{V} permutes
iff \mathcal{V} has a Maltsev term $m(x, y, y) \approx m(y, y, x) \approx x$

Theorem (Tschantz, unpublished)
The filter of congruence permutable varieties is prime

Unfortunately

- The proof is complicated, long and technical
- Does not provide much insight
- Seems close to impossible to generalize

Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c: F_{\mathcal{V}}(X) \rightarrow X$ such that $c(x)=x$ for all $x \in X$ and

$$
\forall f, g \in F_{\mathcal{V}}(X) \forall \alpha \in A \quad f \bar{\alpha} g \Rightarrow c(f) \alpha c(g)
$$

Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c: F_{\mathcal{V}}(X) \rightarrow X$ such that $c(x)=x$ for all $x \in X$ and

$$
\forall f, g \in F_{\mathcal{V}}(X) \forall \alpha \in A \quad f \bar{\alpha} g \Rightarrow c(f) \alpha c(g)
$$

Example:

- $X=\{x, y, z\}, A=\{x y|z, x| y z\}$
- $F_{\mathcal{V}}(X)=$ ternary terms modulo identities of \mathcal{V},

Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c: F_{\mathcal{V}}(X) \rightarrow X$ such that $c(x)=x$ for all $x \in X$ and

$$
\forall f, g \in F_{\mathcal{V}}(X) \forall \alpha \in A \quad f \bar{\alpha} g \Rightarrow c(f) \alpha c(g)
$$

Example:

- $X=\{x, y, z\}, A=\{x y|z, x| y z\}$
- $F_{\mathcal{V}}(X)=$ ternary terms modulo identities of \mathcal{V},
- A-colorability means

If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in x y \mid z$
If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x \mid y z$

Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c: F_{\mathcal{V}}(X) \rightarrow X$ such that $c(x)=x$ for all $x \in X$ and

$$
\forall f, g \in F_{\mathcal{V}}(X) \forall \alpha \in A \quad f \bar{\alpha} g \Rightarrow c(f) \alpha c(g)
$$

Example:

- $X=\{x, y, z\}, A=\{x y|z, x| y z\}$
- $F_{\mathcal{V}}(X)=$ ternary terms modulo identities of \mathcal{V},
- A-colorability means

If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in x y \mid z$
If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x \mid y z$

- If \mathcal{V} has a Maltsev term then it is not A-colorable

Coloring terms by variables

Definition (Segueira, (B))

Let A be a set of equivalences on X. We say that \mathcal{V} is A-colorable, if there exists $c: F_{\mathcal{V}}(X) \rightarrow X$ such that $c(x)=x$ for all $x \in X$ and

$$
\forall f, g \in F_{\mathcal{V}}(X) \forall \alpha \in A \quad f \bar{\alpha} g \Rightarrow c(f) \alpha c(g)
$$

Example:

- $X=\{x, y, z\}, A=\{x y|z, x| y z\}$
- $F_{\mathcal{V}}(X)=$ ternary terms modulo identities of \mathcal{V},
- A-colorability means

If $f(x, x, z) \approx g(x, x, z)$ then $(c(f), c(g)) \in x y \mid z$
If $f(x, z, z) \approx g(x, z, z)$ then $(c(f), c(g)) \in x \mid y z$

- If \mathcal{V} has a Maltsev term then it is not A-colorable
- The converse is also true

Coloring continued

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence n-permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A=\ldots$

Coloring continued

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence n-permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A=\ldots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are linear and not congruence permutable/ n-permutable/modular is not congruence permutable/ ...
- If the filter of ... is not prime then the counterexample must be complicated in some sense

Coloring continued

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence n-permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A=\ldots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are linear and not congruence permutable/ n-permutable/modular is not congruence permutable/ ...
- If the filter of ... is not prime then the counterexample must be complicated in some sense
Pros and cons
- + proofs are simple and natural
- - works (so far) only for linear identities

Coloring continued

- \mathcal{V} is congruence permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence n-permutable iff \mathcal{V} is A-colorable for $A=\ldots$
- \mathcal{V} is congruence modular iff \mathcal{V} is A-colorable for $A=\ldots$

Results coming from this notion Sequeira, Bentz, Opršal, (B):

- The join of two varieties which are linear and not congruence permutable/n-permutable/modular is not congruence permutable/ ...
- If the filter of ... is not prime then the counterexample must be complicated in some sense
Pros and cons
- + proofs are simple and natural
- - works (so far) only for linear identities

Open problem: For some natural class of filters, is it true that F is prime iff members of F can be described by A-colorability for some A ?

(Part 5)
 Relational approach

(pp)-interpretation between relational structures

Every clone \mathbf{A} is equal to $\operatorname{Pol}(\mathbb{A})$ for some relational structure \mathbb{A}, namely $\mathbb{A}=\operatorname{Inv}(\mathbf{A})$

(pp)-interpretation between relational structures

Every clone \mathbf{A} is equal to $\operatorname{Pol}(\mathbb{A})$ for some relational structure \mathbb{A}, namely $\mathbb{A}=\operatorname{Inv}(\mathbf{A})$
$\mathbf{A} \leq \mathbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$
pp -interpretation $=$ first order interpretation from logic where only
$\exists,=, \wedge$ are allowed

(pp)-interpretation between relational structures

Every clone \mathbf{A} is equal to $\operatorname{Pol}(\mathbb{A})$ for some relational structure \mathbb{A}, namely $\mathbb{A}=\operatorname{Inv}(\mathbf{A})$
$\mathbf{A} \leq \mathbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$
pp -interpretation $=$ first order interpretation from logic where only
$\exists,=, \wedge$ are allowed

Examples of pp-interpretations

- pp-definitions

(pp)-interpretation between relational structures

Every clone \mathbf{A} is equal to $\operatorname{Pol}(\mathbb{A})$ for some relational structure \mathbb{A}, namely $\mathbb{A}=\operatorname{Inv}(\mathbf{A})$
$\mathbf{A} \leq \mathbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$
pp -interpretation $=$ first order interpretation from logic where only
$\exists,=, \wedge$ are allowed

Examples of pp-interpretations

- pp-definitions
- induced substructures on a pp-definable subsets

(pp)-interpretation between relational structures

Every clone \mathbf{A} is equal to $\operatorname{Pol}(\mathbb{A})$ for some relational structure \mathbb{A}, namely $\mathbb{A}=\operatorname{Inv}(\mathbf{A})$
$\mathbf{A} \leq \mathbf{B}$ iff there is a pp-interpretation $\mathbb{A} \rightarrow \mathbb{B}$
pp -interpretation $=$ first order interpretation from logic where only
$\exists,=, \wedge$ are allowed

Examples of pp-interpretations

- pp-definitions
- induced substructures on a pp-definable subsets
- Cartesian powers of structures
- other powers

Results

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

Results

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

- Much easier!
- Proofs make sense.

Results

We have \mathbb{A}, \mathbb{B} outside F, we want \mathbb{C} outside F such that $\mathbb{A}, \mathbb{B} \leq \mathbb{C}$

- Much easier!
- Proofs make sense.

Theorem

If \mathcal{V}, \mathcal{W} are not permutable/n-permutable for some $n / m o d u l a r$ and (*) then neither is $\mathcal{V} \vee \mathcal{W}$

- $\left({ }^{*}\right)=$ locally finite idempotent
- for n-permutability $\left({ }^{*}\right)=$ locally finite, or $\left({ }^{*}\right)=$ idempotent Valeriote, Willard
- for modularity, it follows form the work of McGarry, Valeriote

