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Polynomials

Definition
A = 〈A,F 〉 an algebra, n ∈ N. Polk (A) is the subalgebra of

AAk
= 〈{f : Ak → A}, “F pointwise”〉

that is generated by
◮ (x1, . . . , xk ) 7→ xi (i ∈ {1, . . . , k})
◮ (x1, . . . , xk ) 7→ a (a ∈ A).

Proposition
A be an algebra, k ∈ N. Then p ∈ Polk (A) iff there exists a term
t in the language of A, ∃m ∈ N, ∃a1,a2, . . . ,am ∈ A such that

p(x1, x2, . . . , xk ) = tA(a1,a2, . . . ,am, x1, x2, . . . , xk )

for all x1, x2, . . . , xk ∈ A.



§1 : Supernilpotence in expanded groups



Absorbing polynomials

Definition
V = 〈V ,+,−,0, f1, f2, . . .〉 expanded group, p ∈ PolnV.
p is absorbing :⇔ ∀x : 0 ∈ {x1, . . . , xn} ⇒ p(x1, . . . , xn) = 0.

Examples of absorbing polynomials

◮ (G,+,−,0) group, p(x , y) := [x , y ] = −x − y + x + y .
◮ (G,+,−,0) group, p(x1, x2, x3, x4) := [x1, [x2, [x3, x4]]].
◮ (R,+, ·,0,1) ring, p(x1, x2, x3, x4) := x1 · x2 · x3 · x4.
◮ V expanded group, q ∈ Pol2(V),

p(x , y) := q(x , y) − q(x ,0) + q(0,0)− q(0, y).

◮ V expanded group, q ∈ Pol3(V),

p(x , y , z) := q(x , y , z)−q(x , y ,0)+q(x ,0,0)−q(x ,0, z)+

q(0,0, z)− q(0,0,0) + q(0, y ,0) − q(0, y , z).



Supernilpotent expanded groups

Definition
V expanded group. V is k-supernilpotent : ⇔ the zero-function
is the only (k + 1)-ary absorbing polynomial.

Proposition
V expanded group. V is k-supernilpotent if
k = max{ess. arity(p) |||p ∈ Pol(V),p absorbing}.

Proposition
V expanded group. V is

1. 1-supernilpotent iff p(x , y) = p(x ,0)− p(0,0) + p(0, y) for
all p ∈ Pol2(V), x , y ∈ V .

2. 2-supernilpotent iff p(x , y , z) = p(x , y ,0)− p(x ,0,0) +
p(x ,0, z)− p(0,0, z) + p(0,0,0)− p(0, y ,0) + p(0, y , z) for
all p ∈ Pol3(V), x , y , z ∈ V .



Supernilpotence class

Definition
V is supernilpotent of class k : ⇔ k is minimal such that V is
k-supernilpotent.



The Higman-Berman-Blok recursion

Theorem [Higman, 1967, p.154],
[Berman and Blok, 1987]
V finite expanded group.

an(V) := log2(|{p ∈ Clon(V) ||| p is absorbing}|)
tn(V) := log2(|Clon(V)|).

Then tn(V) =
∑n

i=0 ai(V)
(n

i

)
.

Proof: (17 lines).

Corollary (follows from [Berman and Blok, 1987])
V finite expanded group, k ∈ N. TFAE:

1. V is supernilpotent of class k .

2. ∃p: deg(p) = k and |Clon(V)| = 2p(n) for all n ∈ N.



Structure of supernilpotent expanded groups

Theorem (follows from [Kearnes, 1999])
V finite supernilpotent expanded group. Then

V ∼=

k∏

i=1

Wi ,

all Wi of prime power order.

Theorem [Aichinger, 2013]
V supernilpotent expanded group, Con(V) of finite height. Then

V ∼=

k∏

i=1

Wi ,

all Wi monochromatic.



A part of the proof

◮ Suppose there are A ≺ B ≺ C E V, I[A,C] = {A,B,C},
π(C/B) = p ∈ P, π(B/A) = 0.

◮ Suppose A = 0, [C,C] = B, [C,B] = 0.
◮ Use [C,C] = B to produce f ∈ Pol1(V), u, v ∈ V such that

◮ f (0) = 0, f (C) ⊆ B,
◮ f (u + v)− f (u) 6= f (v),
◮ f is constant on each B-coset.

◮ Define a Z[t]-module

M := {f ∈ Pol1(V) ||| f (C) ⊆ B, f̂ (∼B) ⊆ ∆},

t ⋆ m (x) := m(x + v).
◮ Then (t − 1) ⋆ f (u) = f (u + v)− f (u).



A part of the proof

◮ Since exp(C/B) = p, exp(B/0) = 0, we have

(tp − 1) ⋆ f (x) = f (x + p ∗ v)− f (x) = f (x + b)− f (x) = 0.

◮ From gcd(tp − 1, (t − 1)m) = t − 1, we obtain
(t − 1)m ⋆ f 6= 0 for all m ∈ N.

◮ Define h(1) := f , h(n)(x1, . . . , xn) :=
h(n−1)(x1 + xn, x2, . . . , xn−1)− h(n−1)(x1, x2, . . . , xn−1) +
h(n−1)(0, x2, . . . , xn−1)− h(n−1)(xn, x2, . . . , xn−1).

◮ Then h(n) is absorbing, and
h(n)(x1, v , . . . , v) = ((t −1)n−1 ⋆ f ) (x1)− ((t −1)n−1 ⋆ f ) (0).

◮ If h(n) ≡ 0, then (t − 1)n−1 ⋆ f is constant and
(t − 1)n ⋆ f = 0.

◮ Hence h(n) 6≡ 0, contradicting supernilpotence.



§2 : Commutators and Higher Commutators
for Algebras with a Mal’cev Term.



Binary commutators

Definition ([Freese and McKenzie, 1987], cf.
[Smith, 1976, McKenzie et al., 1987])
A algebra, α, β ∈ Con(A). Then η := [α, β] is the smallest
element in Con(A) such that for all polynomials f (x,y) and
vectors a,b,c,d from A, the conditions

◮ a ≡α b, c ≡β d,
◮ f (a,c) ≡η f (a,d)

imply f (b,c) ≡η f (b,d).



Description of binary commutators

Proposition [Aichinger and Mudrinski, 2010]
A algebra with Mal’cev term, α, β ∈ Con(A). Then [α, β] is the
congruence generated by

{(p(a, c),p(b,d)) ||| (a,b) ∈ α, (c,d) ∈ β,p ∈ Pol2(A),

p(a, c) = p(a,d) = p(b, c)}.



Binary commutators for expanded groups

Proposition (cf. [Scott, 1997])
V expanded group, A,B ideals of V. Then [A,B] is the ideal
generated by

{p(a,b) ||| a ∈ A,b ∈ B,p ∈ Pol2(V), p is absorbing}.



Higher commutators for expanded groups

Definition
V expanded group, A1, . . . ,An E V. Then [A1, . . . ,An] is the
ideal generated by

{p(a1, . . . ,an) |||a1 ∈ A1, . . . ,an ∈ An,

p ∈ Poln(V), p is absorbing}.



Higher commutators for arbitrary algebras

Definition [Bulatov, 2001]
A algebra, n ∈ N, α1, . . . , αn, β, δ ∈ Con(A). Then α1, . . . , αn

centralize β modulo δ if for all polynomials f (x1, . . . ,xn,y) and
vectors a1,b1, . . . ,an,bn,c,d from A with

1. ai ≡αi bi for all i ∈ {1,2, . . . ,n},

2. c ≡β d, and

3. f (x1, . . . ,xn,c) ≡δ f (x1, . . . ,xn,d) for all
(x1, . . . ,xn) ∈ {a1,b1} × · · · × {an,bn}\{(b1, . . . ,bn)},

we have
f (b1, . . . ,bn,c) ≡δ f (b1, . . . ,bn,d).

Abbreviation: C(α1, . . . , αn, β; δ).



The definition of higher commutators

Definition [Bulatov, 2001]
A algebra, n ≥ 2, α1, . . . , αn ∈ Con(A). Then [α1, . . . , αn] is
smallest congruence δ such that C(α1, . . . , αn−1, αn; δ).



Properties of higher commutators

Lemma [Mudrinski, 2009, Bulatov, 2001]
A algebra.

◮ [α1, . . . , αn] ≤
∧

i αi .
◮ α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn].
◮ [α1, . . . , αn] ≤ [α2, . . . , αn].

Theorem
[Mudrinski, 2009, Aichinger and Mudrinski, 2010]
A Mal’cev algebra.

◮ [α1, . . . , αn] = [απ(1), . . . , απ(n)] for all π ∈ Sn.
◮ η ≤ α1, . . . , αn ⇒ [α1/η, . . . , αn/η] = ([α1, . . . , αn] ∨ η)/η.
◮ [., . . . , .] is join distributive in every argument.
◮ [α1, . . . , αi , [αi+1, . . . , αn]] ≤ [α1, . . . , αn].

Proofs: ∼25 pages. (AU 63, p.371-395).



Higher commutators for Mal’cev algebras

Theorem [Mudrinski, 2009],
[Aichinger and Mudrinski, 2010, Corollary 6.10]
A algebra with Mal’cev term, α1, . . . , αn ∈ Con(A). Then
[α1, . . . , αn] is the congruence generated by

{
(
f (a1, . . . ,an), f (b1, . . . ,bn)

)
||| (a1,b1) ∈ α1, . . . , (an,bn) ∈ αn,

f ∈ Poln(A), f (x) = f (a1, . . . ,an) for all

x ∈ ({a1,b1} × · · · × {an,bn}) \ {(b1, . . . ,bn)}.}



Examples of Higher Commutators

Example
〈G, ∗〉 group, A,B,C E G. Then
[A,B,C] = [[A,B],C] ∗ [[A,C],B] ∗ [[B,C],A].

Example
R commutative ring with unit, A,B,C E R. Then
[A,B,C] = {

∑n
i=1 aibici |||n ∈ N0,∀i : ai ∈ A,bi ∈ B, ci ∈ C}.

Example
V := 〈Z4,+,2xyz〉. Then [[V ,V ],V ] = 0 and [V ,V ,V ] = {0,2}.



Remarks on the definition of higher commutators

Scope of Higher Commutators

◮ Higher commutators are defined for arbitrary algebras.
◮ Commutativity, join distributivity hold for Mal’cev algebras.
◮ For Mal’cev algebras, there are various descriptions of

higher commutators in [Aichinger and Mudrinski, 2010].
◮ For expanded groups, higher commutators can easily be

described using absorbing polynomials.
◮ Little is known for higher commutators outside c.p.

varieties.



§3 : Supernilpotence for arbitrary algebras



Definition of Supernilpotence

Definition
A is k-supernilpotent :⇔ [1, . . . ,1

︸ ︷︷ ︸

k+1

] = 0.

Definition
A is supernilpotent of class k :⇔ [1, . . . ,1

︸ ︷︷ ︸

k+1

] = 0, [1, . . . ,1
︸ ︷︷ ︸

k

] > 0.



Relation of supernilpotence to similar concepts

Theorem (cf. [Berman and Blok, 1987])
A finite algebra in cp and congruence uniform variety, k ∈ N.
TFAE:

1. ∃p ∈ R[t] : deg(p) = k and |FV(A)(n)| ≤ 2p(n) for all n ∈ N.

2. A is supernilpotent of class ≤ k .

Assumption ”congruence uniform” can be dropped by
[Hobby and McKenzie, 1988, Lemma 12.4].

Theorem
A finite Mal’cev algebra. TFAE:

1. A generates a congruence uniform variety and has a finite
bound on the length of its commutator terms.

2. A is supernilpotent.



Finiteness results for supernilpotent algebras

Theorem
A Mal’cev algebra, k-supernilpotent,

s := max(3, k + 1)
t := |A|max(|A|+1,k+3).

Then

1. Clo(A) = 〈Clos(A)〉,

2. A finite ⇒ Clo(A) = Polym Inv[t](A).



Results for supernilpotent algebras

Theorem
A finite supernilpotent Mal’cev algebra. Then

1. {(s, t) | A |= s ≈ t} ∈ P.

2. Affine completeness is decidable.



Structural results on supernilpotent Mal’cev algebras

Theorem (Gumm)
A abelian (= 1-supernilpotent) Mal’cev algebra. Then A is
polynomially equivalent to a module over a ring with 1.

Theorem (Mudrinski)
A 2-supernilpotent Mal’cev algebra. Then A is polynomially
equivalent to an expanded group.



Nilpotence

Definition of the lower central series
γ1(A) := 1A, γn(A) := [1A, γn−1(A)] for n ≥ 2.

Nilpotence
A algebra with Mal’cev term. A is nilpotent of class k :⇔
γk (A) 6= 0A, γk+1(A) = 0A.

The “lower superseries”
σn(A) := [1A, . . . ,1A

︸ ︷︷ ︸

n

].

Supernilpotence
A algebra with Mal’cev term. A is supernilpotent of class k :⇔
σk (A) 6= 0A, σk+1(A) = 0A.



Connections between nilpotency and supernilpotency

Supernilpotency implies Nilpotency
A algebra with a Mal’cev term. Then A supernilpotent of
class k ⇒ A nilpotent of class ≤ k .

Idea in the proof: [α1, [α2, α3]] ≤ [α1, α2, α3].

Examples

◮ N6 := 〈Z6,+, f 〉 with f (0) = f (3) = 3,
f (1) = f (2) = f (4) = f (5) = 0 is nilpotent of class 2 and not
supernilpotent.

◮ 〈Z4,+,2x1x2,2x1x2x3,2x1x2x3x4, . . .〉 is nilpotent of class 2
and not supernilpotent.



Deeper connections between nilpotence and
supernilpotence

Theorem [Berman and Blok, 1987], [Kearnes, 1999]
A finite, finite type, with Mal’cev term. TFAE:

1. A is nilpotent and isomorphic to a direct product of
algebras of prime power order.

2. A is supernilpotent.

Theorem
G group, k ∈ N. G is nilpotent of class k ⇔ G is supernilpotent
of class k .

Proof: Commutator calculus from group theory.



Connections between Nilpotence and Supernilpotence

Theorem [Aichinger and Mudrinski, 2012]
V = 〈V ,+,−,0,g1,g2, . . .〉 expanded group, m ≥ 2 such that

1. all gi have arity ≤ m,

2. all mappings x 7→ gi(v1, . . . , vi−1, x , vi+1, . . . , vmi ) are
endomorphisms of 〈V ,+〉 (multilinearity),

3. V is nilpotent of class k .

Then V is supernilpotent of class ≤ mk−1.

Idea of the proof: expand using multilinearity and then use
commutator calculus.



A non-property of supernilpotency

Example [Aichinger and Mudrinski, 2012]
V := 〈(Z7)

3,+, f :
( x

y
z

)

7→
(

0 1 0
0 0 1
0 0 0

)

·
( x

y
z

)

, g1,g2〉 with g1,g2

bilinear such that

g1(ei ,ej ,ek ) :=

{
e1 if i , j , k ≥ 2,
0 else.

g2(ei ,ej ,ek ) :=

{
e2 if i , j , k = 3,
0 else.

V1 := 〈V ,+, f ,g1〉, V2 := 〈V ,+, f ,g2〉.

Then [1,1,1]V1
= [1,1,1]V2

= [1, [1,1]V1
]V1

= [1, [1,1]V2
]V2

= 0
and

[1,1,1]V > 0, [1, [1,1]V]V > 0.

Conclusion
Functions that preserve the nilpotency class or the
supernilpotency class need not form a clone.



§4 : Lattices that force supernilpotence



Splitting lattices

Definition
L lattice. L splits :⇔ ∃ε, δ ∈ L: 0 < ε and δ < 1 and

∀α ∈ L : α ≥ ε or α ≤ δ.



Clones with splitting congruence lattices

Theorem
A finite algebra, Con(A) splits. Then |Compn(A)| ≥ 22n

.



Lattices forcing supernilpotency

Theorem [Aichinger and Mudrinski, 2013]
A finite algebra with Mal’cev term. If Con(A) does not split, then
A is supernilpotent of class k with
k ≤ (number of atoms of Con(A))− 1.

Corollary
The congruence lattice of a finite non-nilpotent algebra with
Mal’cev term splits.

Theorem (a converse)
A algebra with Mal’cev term. If Con(A) splits, then A has a
congruence preserving expansion that is not supernilpotent.



Consequences on finite generation of clones

Theorem
A finite algebra with Mal’cev term, Con(A) a simple lattice,
|Con(A)| > 2. TFAE:

1. Comp(A) is finitely generated.

2. Con(A) does not split.

Theorem [Aichinger, 2002]
G := 〈Cp2 × Cp,+〉, p prime, k ∈ N. Then G := 〈G,Compk (G)〉

satisfies Polk (G) = Compk (G), but G is not affine complete.



Determination of the commutators in terms of the
congruence lattice

Definition
L lattice, α join irreducible. α is lonesome ⇔ there is no join
irreducible β ∈ L with α 6= β, I[α−, α] ! I[β−, β].

Theorem [Aichinger, 2006]
Let V be a finite expanded group, α ∈ Con(V), α join
irreducible. Let V := (V ,Comp(V)). TFAE:

1. [α,α]V ≤ α−.

2. α is not lonesome.



Centralizers of prime sections

Theorem
V finite expanded group, L := Con(V), α ≺ β ∈ L.
V := (V ,Comp(V)). Then

CV(α : β) =
∨

{η ∈ M(L) : I[α, β] ! I[η, η+]}.

Theorem [Aichinger, 2006]
V finite expanded group, A ≺ B, C ≺ D ideals of V. If I[A,B]
and I[C,D] are not projective in the ideal lattice, then there is
f ∈ Comp1(V) with f (0) = 0, f (B) ⊆ A, f (D) 6⊆ C.



§5 : The clone of congruence preserving
functions



Finite generation of congruence preserving functions

Theorem
A finite algebra with Mal’cev term. If Con(A) does not split
strongly, then Comp(A) is generated by Compk (A) with
k := max(3, (number of atoms of Con(A))− 1).



Lattices with (APMI)

Definition
L lattice. L has adjacent projective meet irreducibles : ⇔
∀ meet irreducible α, β ∈ L:

I[α,α+] ! I[β, β+] ⇒ α+ = β+.

Index 1

Index 2

Index 4

Index 8

G

1

2
3

4

56 7

Con(C2 × C4)
does not have
(APMI).

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 1112

1314 1516

17

1819 20

Con(S3 × C2 × C2) has
(APMI).

G

1

2

34

56

7

8

9

Con(C11 × C2 ×
C2) has (APMI).



Algebras with (APMI) congruence lattices

Algebras that have (APMI) congruence lattices

◮ All Ai finite simple algebras with Mal’cev term. Then
Con(A1 × · · · × An) has (APMI).

◮ Every finite distributive lattice has (APMI).
◮ G finite group, G ∈ V(S3) Then Con(G) has (APMI).
◮ A satisfies (SC1) ⇒ Con(A) satisfies (APMI)

[Idziak and Słomczyńska, 2001].



Structure of (APMI)-lattices

Theorem [Aichinger and Mudrinski, 2009]
L finite modular lattice with (APMI), |L| > 1. Then ∃m ∈ N,
∃β0, . . . , βm ∈ D(L) such that

1. 0 = β0 < β1 < · · · < βm = 1,

2. each I[βi , βi+1] is a simple complemented modular lattice.



Pictures of (APMI)-lattices

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 11
12

1314 1516

17

1819 20

Con(S3 × C2 × C2)

Index 1

Index 2

Index 4

Index 11

Index 22

Index 44

G

1

2

34

56

7

8

9

Con(A5 × C2 × C2)



The clone of congruence preserving functions of
(APMI)-algebras

Theorem [Aichinger and Mudrinski, 2009]
V finite expanded group, congruence-(APMI). Then the clone
Comp(V) is generated by Comp2(V).

Corollary
V finite expanded group, congruence-(APMI). V is affine
complete if and only if Comp2(V) = Pol2(V).



A natural occurrence of the condition (APMI)

Theorem [Aichinger and Mudrinski, 2009] (Unary
compatible function extension property)
V finite expanded group. TFAE:

1. Every unary partial congruence preserving function on V
can be extended to a total function.

2. All unary total congruence perserving functions on
quotients of V can be lifted to V.

3. V is congruence-(APMI), and ∀ α, β ∈ D(Con(V)),
γ ∈ Con(V) : α ≺D(Con(V)) β, α ≺Con(V) γ < β ⇒
|0/γ| = 2 ∗ |0/α|.



Unary compatible function extension property

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 11
12

1314 1516

17

1819 20

The group S3 × C2 × C2 has the
unary CFEP.

G

1

23 4

5

6

The group SL(2,5)× C2 is not
congruence-(APMI), hence (CFEP)
fails.
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