Higher commutators, nilpotence, and supernilpotence

Erhard Aichinger

Department of Algebra
Johannes Kepler University Linz, Austria

Supported by the Austrian Science Fund (FWF):P24077

June 2013, NSAC 2013

Polynomials

Definition
$\mathbf{A}=\langle A, F\rangle$ an algebra, $n \in \mathbb{N} . \operatorname{Pol}_{k}(\mathbf{A})$ is the subalgebra of

$$
\mathbf{A}^{A^{k}}=\left\langle\left\{f: A^{k} \rightarrow A\right\}, " F \text { pointwise" }\right\rangle
$$

that is generated by

- $\left(x_{1}, \ldots, x_{k}\right) \mapsto x_{i}(i \in\{1, \ldots, k\})$
- $\left(x_{1}, \ldots, x_{k}\right) \mapsto a(a \in A)$.

Proposition

\mathbf{A} be an algebra, $k \in \mathbb{N}$. Then $\mathbf{p} \in \operatorname{Pol}_{k}(\mathbf{A})$ iff there exists a term t in the language of $\mathbf{A}, \exists m \in \mathbb{N}, \exists a_{1}, a_{2}, \ldots, a_{m} \in A$ such that

$$
\mathbf{p}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\mathbf{t}^{\mathbf{A}}\left(a_{1}, a_{2}, \ldots, a_{m}, x_{1}, x_{2}, \ldots, x_{k}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{k} \in A$.

§1: Supernilpotence in expanded groups

Absorbing polynomials

Definition
$\mathbf{V}=\left\langle V,+,-, 0, f_{1}, f_{2}, \ldots\right\rangle$ expanded group, $p \in \operatorname{Pol}_{n} \mathbf{V}$.
p is absorbing : $\Leftrightarrow \forall \mathbf{x}: 0 \in\left\{x_{1}, \ldots, x_{n}\right\} \Rightarrow p\left(x_{1}, \ldots, x_{n}\right)=0$.
Examples of absorbing polynomials

- ($G,+,-, 0$) group, $p(x, y):=[x, y]=-x-y+x+y$.
- ($G,+,-, 0)$ group, $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\left[x_{1},\left[x_{2},\left[x_{3}, x_{4}\right]\right]\right]$.
- $(R,+, \cdot, 0,1)$ ring, $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$.
- \mathbf{V} expanded group, $q \in \operatorname{Pol}_{2}(\mathbf{V})$,

$$
p(x, y):=q(x, y)-q(x, 0)+q(0,0)-q(0, y) .
$$

- \mathbf{V} expanded group, $q \in \mathrm{Pol}_{3}(\mathbf{V})$,

$$
\begin{aligned}
p(x, y, z):= & q(x, y, z)-q(x, y, 0)+q(x, 0,0)-q(x, 0, z)+ \\
& q(0,0, z)-q(0,0,0)+q(0, y, 0)-q(0, y, z) .
\end{aligned}
$$

Supernilpotent expanded groups

Definition

\mathbf{V} expanded group. \mathbf{V} is k-supernilpotent : \Leftrightarrow the zero-function is the only $(k+1)$-ary absorbing polynomial.

Proposition
\mathbf{V} expanded group. \mathbf{V} is k-supernilpotent if
$k=\max \{\operatorname{ess} . \operatorname{arity}(p) \mid p \in \operatorname{Pol}(\mathbf{V}), p$ absorbing $\}$.
Proposition
\mathbf{V} expanded group. \mathbf{V} is

1. 1-supernilpotent iff $p(x, y)=p(x, 0)-p(0,0)+p(0, y)$ for all $p \in \operatorname{Pol}_{2}(\mathbf{V}), x, y \in V$.
2. 2-supernilpotent iff $p(x, y, z)=p(x, y, 0)-p(x, 0,0)+$ $p(x, 0, z)-p(0,0, z)+p(0,0,0)-p(0, y, 0)+p(0, y, z)$ for all $p \in \mathrm{Pol}_{3}(\mathbf{V}), x, y, z \in V$.

Supernilpotence class

Definition
\mathbf{V} is supernilpotent of class $k: \Leftrightarrow k$ is minimal such that \mathbf{V} is k-supernilpotent.

The Higman-Berman-Blok recursion

Theorem [Higman, 1967, p.154],
[Berman and Blok, 1987]
V finite expanded group.

$$
\begin{aligned}
a_{n}(\mathbf{V}) & :=\log _{2}\left(\mid\left\{p \in \operatorname{Clo}_{n}(\mathbf{V}) \mid p \text { is absorbing }\right\} \mid\right) \\
t_{n}(\mathbf{V}) & :=\log _{2}\left(\left|\operatorname{Clo}_{n}(\mathbf{V})\right|\right) .
\end{aligned}
$$

Then $t_{n}(\mathbf{V})=\sum_{i=0}^{n} a_{i}(\mathbf{V})\binom{n}{i}$.
Proof: (17 lines).
Corollary (follows from [Berman and Blok, 1987])
\mathbf{V} finite expanded group, $k \in \mathbb{N}$. TFAE:

1. \mathbf{V} is supernilpotent of class k.
2. $\exists p: \operatorname{deg}(p)=k$ and $\left|\mathrm{Clo}_{n}(\mathbf{V})\right|=2^{p(n)}$ for all $n \in \mathbb{N}$.

Structure of supernilpotent expanded groups

Theorem (follows from [Kearnes, 1999])
\mathbf{V} finite supernilpotent expanded group. Then

$$
\mathbf{V} \cong \prod_{i=1}^{k} \mathbf{w}_{i}
$$

all \mathbf{W}_{i} of prime power order.
Theorem [Aichinger, 2013]
V supernilpotent expanded group, Con (\mathbf{V}) of finite height. Then

$$
\mathbf{V} \cong \prod_{i=1}^{k} \mathbf{w}_{i}
$$

all \mathbf{W}_{i} monochromatic.

A part of the proof

- Suppose there are $A \prec B \prec C \unlhd \mathbf{V}, \mathbb{I}[A, C]=\{A, B, C\}$, $\pi(C / B)=p \in \mathbb{P}, \pi(B / A)=0$.
- Suppose $A=0,[C, C]=B,[C, B]=0$.
- Use $[C, C]=B$ to produce $f \in \operatorname{Pol}_{1}(\mathbf{V}), u, v \in V$ such that
- $f(0)=0, f(C) \subseteq B$,
- $f(u+v)-f(u) \neq f(v)$,
- f is constant on each B-coset.
- Define a $\mathbb{Z}[t]$-module

$$
M:=\left\{f \in \operatorname{Pol}_{1}(\mathbf{V}) \mid f(C) \subseteq B, \hat{f}\left(\sim_{B}\right) \subseteq \Delta\right\}
$$

$t \star m(x):=m(x+v)$.

- Then $(t-1) \star f(u)=f(u+v)-f(u)$.

A part of the proof

- Since $\exp (C / B)=p, \exp (B / 0)=0$, we have

$$
\left(t^{p}-1\right) \star f(x)=f(x+p * v)-f(x)=f(x+b)-f(x)=0
$$

- From $\operatorname{gcd}\left(t^{p}-1,(t-1)^{m}\right)=t-1$, we obtain $(t-1)^{m} \star f \neq 0$ for all $m \in \mathbb{N}$.
- Define $h^{(1)}:=f, h^{(n)}\left(x_{1}, \ldots, x_{n}\right):=$ $h^{(n-1)}\left(x_{1}+x_{n}, x_{2}, \ldots, x_{n-1}\right)-h^{(n-1)}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+$ $h^{(n-1)}\left(0, x_{2}, \ldots, x_{n-1}\right)-h^{(n-1)}\left(x_{n}, x_{2}, \ldots, x_{n-1}\right)$.
- Then $h^{(n)}$ is absorbing, and $h^{(n)}\left(x_{1}, v, \ldots, v\right)=\left((t-1)^{n-1} \star f\right)\left(x_{1}\right)-\left((t-1)^{n-1} \star f\right)(0)$.
- If $h^{(n)} \equiv 0$, then $(t-1)^{n-1} \star f$ is constant and $(t-1)^{n} \star f=0$.
- Hence $h^{(n)} \not \equiv 0$, contradicting supernilpotence.
§2: Commutators and Higher Commutators for Algebras with a Mal'cev Term.

Binary commutators

Definition ([Freese and McKenzie, 1987], cf.
[Smith, 1976, McKenzie et al., 1987])
A algebra, $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$. Then $\eta:=[\alpha, \beta]$ is the smallest element in $\operatorname{Con}(\mathbf{A})$ such that for all polynomials $f(\mathbf{x}, \mathbf{y})$ and vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ from \mathbf{A}, the conditions

- $\mathbf{a} \equiv{ }_{\alpha} \mathbf{b}, \mathbf{c} \equiv{ }_{\beta} \mathbf{d}$,
- $f(\mathbf{a}, \mathbf{c}) \equiv{ }_{\eta} f(\mathbf{a}, \mathbf{d})$
imply $f(\mathbf{b}, \mathbf{c}) \equiv_{\eta} f(\mathbf{b}, \mathbf{d})$.

Description of binary commutators

Proposition [Aichinger and Mudrinski, 2010]
A algebra with Mal'cev term, $\alpha, \beta \in \operatorname{Con}(\mathbf{A})$. Then $[\alpha, \beta]$ is the congruence generated by

$$
\begin{aligned}
& \left\{(p(a, c), p(b, d)) \mid(a, b) \in \alpha,(c, d) \in \beta, p \in \operatorname{Pol}_{2}(\mathbf{A})\right. \\
& \quad p(a, c)=p(a, d)=p(b, c)\}
\end{aligned}
$$

Binary commutators for expanded groups

Proposition (cf. [Scott, 1997])
\mathbf{V} expanded group, A, B ideals of \mathbf{V}. Then $[A, B]$ is the ideal generated by

$$
\left\{p(a, b) \mid a \in A, b \in B, p \in \operatorname{Pol}_{2}(\mathbf{V}), p \text { is absorbing }\right\} .
$$

Higher commutators for expanded groups

Definition
\mathbf{V} expanded group, $A_{1}, \ldots, A_{n} \unlhd \mathbf{V}$. Then $\left[A_{1}, \ldots, A_{n}\right]$ is the ideal generated by

$$
\begin{aligned}
\left\{p\left(a_{1}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, \ldots, a_{n}\right. & \in A_{n} \\
& \left.p \in \operatorname{Pol}_{n}(\mathbf{V}), p \text { is absorbing }\right\} .
\end{aligned}
$$

Higher commutators for arbitrary algebras

Definition [Bulatov, 2001]
A algebra, $n \in \mathbb{N}, \alpha_{1}, \ldots, \alpha_{n}, \beta, \delta \in \operatorname{Con}(\mathbf{A})$. Then $\alpha_{1}, \ldots, \alpha_{n}$ centralize β modulo δ if for all polynomials $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{y}\right)$ and vectors $\mathbf{a}_{1}, \mathbf{b}_{1}, \ldots, \mathbf{a}_{n}, \mathbf{b}_{n}, \mathbf{c}, \mathbf{d}$ from \mathbf{A} with

1. $\mathbf{a}_{i} \equiv{ }_{\alpha_{i}} \mathbf{b}_{i}$ for all $i \in\{1,2, \ldots, n\}$,
2. $\mathbf{c} \equiv_{\beta} \mathbf{d}$, and
3. $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{c}\right) \equiv_{\delta} f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{d}\right)$ for all

$$
\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) \in\left\{\mathbf{a}_{1}, \mathbf{b}_{1}\right\} \times \cdots \times\left\{\mathbf{a}_{n}, \mathbf{b}_{n}\right\} \backslash\left\{\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)\right\},
$$

we have

$$
f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}, \mathbf{c}\right) \equiv_{\delta} f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}, \mathbf{d}\right) .
$$

Abbreviation: $\boldsymbol{C}\left(\alpha_{1}, \ldots, \alpha_{n}, \beta ; \delta\right)$.

The definition of higher commutators

Definition [Bulatov, 2001]
A algebra, $n \geq 2, \alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Con}(\mathbf{A})$. Then $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is smallest congruence δ such that $C\left(\alpha_{1}, \ldots, \alpha_{n-1}, \alpha_{n} ; \delta\right)$.

Properties of higher commutators

Lemma [Mudrinski, 2009, Bulatov, 2001]
A algebra.

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i} \alpha_{i}$.
- $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$.
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$.

Theorem
[Mudrinski, 2009, Aichinger and Mudrinski, 2010]
A Mal'cev algebra.

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]$ for all $\pi \in S_{n}$.
- $\eta \leq \alpha_{1}, \ldots, \alpha_{n} \Rightarrow\left[\alpha_{1} / \eta, \ldots, \alpha_{n} / \eta\right]=\left(\left[\alpha_{1}, \ldots, \alpha_{n}\right] \vee \eta\right) / \eta$.
- $[., \ldots,$.$] is join distributive in every argument.$
- $\left[\alpha_{1}, \ldots, \alpha_{i},\left[\alpha_{i+1}, \ldots, \alpha_{n}\right]\right] \leq\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.

Proofs: ~25 pages. (AU 63, p.371-395).

Higher commutators for Mal'cev algebras

Theorem [Mudrinski, 2009],
[Aichinger and Mudrinski, 2010, Corollary 6.10]
A algebra with Mal'cev term, $\alpha_{1}, \ldots, \alpha_{n} \in \operatorname{Con}(\mathbf{A})$. Then [$\alpha_{1}, \ldots, \alpha_{n}$] is the congruence generated by

$$
\begin{aligned}
& \left\{\left(f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right) \mid\left(a_{1}, b_{1}\right) \in \alpha_{1}, \ldots,\left(a_{n}, b_{n}\right) \in \alpha_{n}\right. \\
& \quad f \in \operatorname{Pol}_{n}(\mathbf{A}), f(\mathbf{x})=f\left(a_{1}, \ldots, a_{n}\right) \text { for all } \\
& \left.\quad \mathbf{x} \in\left(\left\{a_{1}, b_{1}\right\} \times \cdots \times\left\{a_{n}, b_{n}\right\}\right) \backslash\left\{\left(b_{1}, \ldots, b_{n}\right)\right\} .\right\}
\end{aligned}
$$

Examples of Higher Commutators

Example
$\langle G, *\rangle$ group, $A, B, C \unlhd \mathbf{G}$. Then
$[A, B, C]=[[A, B], C] *[[A, C], B] *[[B, C], A]$.
Example
\mathbf{R} commutative ring with unit, $A, B, C \unlhd \mathbf{R}$. Then
$[A, B, C]=\left\{\sum_{i=1}^{n} a_{i} b_{i} c_{i} \mid n \in \mathbb{N}_{0}, \forall i: a_{i} \in A, b_{i} \in B, c_{i} \in C\right\}$.
Example
$\mathbf{V}:=\left\langle\mathbb{Z}_{4},+, 2 x y z\right\rangle$. Then $[[V, V], V]=0$ and $[V, V, V]=\{0,2\}$.

Remarks on the definition of higher commutators

Scope of Higher Commutators

- Higher commutators are defined for arbitrary algebras.
- Commutativity, join distributivity hold for Mal'cev algebras.
- For Mal'cev algebras, there are various descriptions of higher commutators in [Aichinger and Mudrinski, 2010].
- For expanded groups, higher commutators can easily be described using absorbing polynomials.
- Little is known for higher commutators outside c.p. varieties.

§3 : Supernilpotence for arbitrary algebras

Definition of Supernilpotence

Definition
\mathbf{A} is k-supernilpotent $: \Leftrightarrow[\underbrace{1, \ldots, 1}_{k+1}]=0$.
Definition
\mathbf{A} is supernilpotent of class $k: \Leftrightarrow[\underbrace{1, \ldots, 1}_{k+1}]=0,[\underbrace{1, \ldots, 1}_{k}]>0$.

Relation of supernilpotence to similar concepts

Theorem (cf. [Berman and Blok, 1987])

A finite algebra in cp and congruence uniform variety, $k \in \mathbb{N}$. TFAE:

1. $\exists p \in \mathbb{R}[t]: \operatorname{deg}(p)=k$ and $\left|\mathbf{F}_{\mathcal{V}(\mathbf{A})}(n)\right| \leq 2^{p(n)}$ for all $n \in \mathbb{N}$.
2. \mathbf{A} is supernilpotent of class $\leq k$.

Assumption "congruence uniform" can be dropped by [Hobby and McKenzie, 1988, Lemma 12.4].
Theorem
A finite Mal'cev algebra. TFAE:

1. A generates a congruence uniform variety and has a finite bound on the length of its commutator terms.
2. \mathbf{A} is supernilpotent.

Finiteness results for supernilpotent algebras

Theorem
A Mal'cev algebra, k-supernilpotent,

$$
\begin{aligned}
s & :=\max (3, k+1) \\
t & :=|A|^{\max (|A|+1, k+3)} .
\end{aligned}
$$

Then

1. $\operatorname{Clo}(\mathbf{A})=\left\langle\operatorname{Clo}_{s}(\mathbf{A})\right\rangle$,
2. A finite $\Rightarrow \operatorname{Clo}(\mathbf{A})=\operatorname{Polym}_{\operatorname{Inv}}{ }^{[t]}(\mathbf{A})$.

Results for supernilpotent algebras

Theorem

A finite supernilpotent Mal'cev algebra. Then

1. $\{(s, t) \mid \mathbf{A} \models s \approx t\} \in \mathbf{P}$.
2. Affine completeness is decidable.

Structural results on supernilpotent Mal'cev algebras

Theorem (Gumm)
A abelian ($=1$-supernilpotent) Mal'cev algebra. Then \mathbf{A} is polynomially equivalent to a module over a ring with 1.

Theorem (Mudrinski)
A 2-supernilpotent Mal'cev algebra. Then A is polynomially equivalent to an expanded group.

Nilpotence

Definition of the lower central series
$\gamma_{1}(\mathbf{A}):=1_{A}, \gamma_{n}(\mathbf{A}):=\left[1_{A}, \gamma_{n-1}(\mathbf{A})\right]$ for $n \geq 2$.
Nilpotence
A algebra with Mal'cev term. A is nilpotent of class $k: \Leftrightarrow$
$\gamma_{k}(\mathbf{A}) \neq 0_{A}, \gamma_{k+1}(\mathbf{A})=0_{A}$.
The "lower superseries"
$\sigma_{n}(\mathbf{A}):=[\underbrace{1_{A}, \ldots, 1_{A}}_{n}]$.
Supernilpotence
A algebra with Mal'cev term. A is supernilpotent of class $k: \Leftrightarrow$ $\sigma_{k}(\mathbf{A}) \neq 0_{A}, \sigma_{k+1}(\mathbf{A})=0_{A}$.

Connections between nilpotency and supernilpotency

Supernilpotency implies Nilpotency
A algebra with a Mal'cev term. Then A supernilpotent of class $k \Rightarrow \mathbf{A}$ nilpotent of class $\leq k$. Idea in the proof: $\left[\alpha_{1},\left[\alpha_{2}, \alpha_{3}\right]\right] \leq\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$.
Examples

- $\mathbf{N}_{6}:=\left\langle\mathbb{Z}_{6},+, f\right\rangle$ with $f(0)=f(3)=3$,
$f(1)=f(2)=f(4)=f(5)=0$ is nilpotent of class 2 and not supernilpotent.
- $\left\langle\mathbb{Z}_{4},+, 2 x_{1} x_{2}, 2 x_{1} x_{2} x_{3}, 2 x_{1} x_{2} x_{3} x_{4}, \ldots\right\rangle$ is nilpotent of class 2 and not supernilpotent.

Deeper connections between nilpotence and supernilpotence

Theorem [Berman and Blok, 1987], [Kearnes, 1999]
A finite, finite type, with Mal'cev term. TFAE:

1. \mathbf{A} is nilpotent and isomorphic to a direct product of algebras of prime power order.
2. \mathbf{A} is supernilpotent.

Theorem
\mathbf{G} group, $k \in \mathbb{N}$. \mathbf{G} is nilpotent of class $k \Leftrightarrow \mathbf{G}$ is supernilpotent of class k.
Proof: Commutator calculus from group theory.

Connections between Nilpotence and Supernilpotence

Theorem [Aichinger and Mudrinski, 2012]
$\mathbf{V}=\left\langle V,+,-, 0, g_{1}, g_{2}, \ldots\right\rangle$ expanded group, $m \geq 2$ such that

1. all g_{i} have arity $\leq m$,
2. all mappings $x \mapsto g_{i}\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_{m_{i}}\right)$ are endomorphisms of $\langle V,+\rangle$ (multilinearity),
3. \mathbf{V} is nilpotent of class k.

Then \mathbf{V} is supernilpotent of class $\leq m^{k-1}$.
Idea of the proof: expand using multilinearity and then use commutator calculus.

A non-property of supernilpotency

Example [Aichinger and Mudrinski, 2012]
$\mathbf{V}:=\left\langle\left(\mathbb{Z}_{7}\right)^{3},+, f:\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \mapsto\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{l}x \\ y \\ z\end{array}\right), g_{1}, g_{2}\right\rangle$ with g_{1}, g_{2}
bilinear such that
$g_{1}\left(e_{i}, e_{j}, e_{k}\right):=\left\{\begin{array}{l}e_{1} \text { if } i, j, k \geq 2, \\ 0 \text { else. }\end{array} \quad g_{2}\left(e_{i}, e_{j}, e_{k}\right):=\left\{\begin{array}{l}e_{2} \text { if } i, j, k=3, \\ 0 \text { else. }\end{array}\right.\right.$

$$
\mathbf{V}_{1}:=\left\langle V,+, f, g_{1}\right\rangle, \quad \mathbf{V}_{2}:=\left\langle V,+, f, g_{2}\right\rangle .
$$

Then $[1,1,1] \mathrm{v}_{1}=[1,1,1] \mathrm{v}_{2}=\left[1,[1,1] \mathrm{v}_{1}\right] \mathrm{v}_{1}=\left[1,[1,1] \mathrm{v}_{2}\right] \mathrm{v}_{2}=0$ and

$$
[1,1,1]_{\mathrm{v}}>0, \quad\left[1,[1,1]_{\mathrm{v}}\right]_{\mathrm{v}}>0 .
$$

Conclusion
Functions that preserve the nilpotency class or the supernilpotency class need not form a clone.

§4 : Lattices that force supernilpotence

Splitting lattices

Definition

\mathbb{L} lattice. \mathbb{L} splits $: \Leftrightarrow \exists \varepsilon, \delta \in \mathbb{L}: 0<\varepsilon$ and $\delta<1$ and

$$
\forall \alpha \in \mathbb{L}: \alpha \geq \varepsilon \text { or } \alpha \leq \delta
$$

Clones with splitting congruence lattices

Theorem
A finite algebra, $\operatorname{Con}(\mathbf{A})$ splits. Then $\left|\operatorname{Comp}_{n}(\mathbf{A})\right| \geq 2^{2^{n}}$.

Lattices forcing supernilpotency

Theorem [Aichinger and Mudrinski, 2013]
A finite algebra with Mal'cev term. If $\operatorname{Con}(\mathbf{A})$ does not split, then
A is supernilpotent of class k with
$k \leq($ number of atoms of $\operatorname{Con}(\mathbf{A}))-1$.

Corollary

The congruence lattice of a finite non-nilpotent algebra with Mal'cev term splits.

Theorem (a converse)
\mathbf{A} algebra with Mal'cev term. If $\operatorname{Con}(\mathbf{A})$ splits, then \mathbf{A} has a congruence preserving expansion that is not supernilpotent.

Consequences on finite generation of clones

Theorem
A finite algebra with Mal'cev term, $\operatorname{Con}(\mathbf{A})$ a simple lattice, $|\operatorname{Con}(\mathbf{A})|>2$. TFAE:

1. $\operatorname{Comp}(\mathbf{A})$ is finitely generated.
2. Con(A) does not split.

Theorem [Aichinger, 2002]
$\mathbf{G}:=\left\langle C_{p^{2}} \times C_{p},+\right\rangle, p$ prime, $k \in \mathbb{N}$. Then $\overline{\mathbf{G}}:=\left\langle\mathbf{G}, \operatorname{Comp}_{k}(\mathbf{G})\right\rangle$
satisfies $\operatorname{Pol}_{k}(\overline{\mathbf{G}})=\operatorname{Comp}_{k}(\overline{\mathbf{G}})$, but $\overline{\mathbf{G}}$ is not affine complete.

Determination of the commutators in terms of the congruence lattice

Definition

\mathbb{L} lattice, α join irreducible. α is lonesome \Leftrightarrow there is no join irreducible $\beta \in \mathbb{L}$ with $\alpha \neq \beta, \mathbb{I}\left[\alpha^{-}, \alpha\right]$ m $\mathbb{I}\left[\beta^{-}, \beta\right]$.

Theorem [Aichinger, 2006]
Let \mathbf{V} be a finite expanded group, $\alpha \in \operatorname{Con}(\mathbf{V}), \alpha$ join irreducible. Let $\overline{\mathbf{V}}:=(V, \operatorname{Comp}(\mathbf{V}))$. TFAE:

1. $[\alpha, \alpha]_{\bar{v}} \leq \alpha^{-}$.
2. α is not lonesome.

Centralizers of prime sections

Theorem
\mathbf{V} finite expanded group, $\mathbb{L}:=\operatorname{Con}(\mathbf{V}), \alpha \prec \beta \in \mathbb{L}$.
$\overline{\mathbf{V}}:=(V, \operatorname{Comp}(\mathbf{V}))$. Then

$$
C_{\overline{\mathbf{V}}}(\alpha: \beta)=\bigvee\left\{\eta \in M(\mathbb{L}): \mathbb{I}[\alpha, \beta] \text { m } \mathbb{I}\left[\eta, \eta^{+}\right]\right\} .
$$

Theorem [Aichinger, 2006]
\mathbf{V} finite expanded group, $A \prec B, C \prec D$ ideals of \mathbf{V}. If $\mathbb{I}[A, B]$ and $\mathbb{I}[C, D]$ are not projective in the ideal lattice, then there is $f \in \mathrm{Comp}_{1}(\mathbf{V})$ with $f(0)=0, f(B) \subseteq A, f(D) \nsubseteq C$.

§5 : The clone of congruence preserving functions

Finite generation of congruence preserving functions

Theorem
A finite algebra with Mal'cev term. If $\operatorname{Con}(\mathbf{A})$ does not split strongly, then $\operatorname{Comp}(\mathbf{A})$ is generated by $\operatorname{Comp}_{k}(\mathbf{A})$ with $k:=\max (3,($ number of atoms of $\operatorname{Con}(\mathbf{A}))-1)$.

Lattices with (APMI)

Definition

\mathbb{L} lattice. \mathbb{L} has adjacent projective meet irreducibles : \Leftrightarrow \forall meet irreducible $\alpha, \beta \in \mathbb{L}$:

$$
\mathbb{I}\left[\alpha, \alpha^{+}\right] \leadsto \mathbb{I}\left[\beta, \beta^{+}\right] \Rightarrow \alpha^{+}=\beta^{+} .
$$

Con $\left(C_{2} \times C_{4}\right)$ does not have (APMI).
$\operatorname{Con}\left(S_{3} \times C_{2} \times C_{2}\right)$ has (APMI).
$\operatorname{Con}\left(C_{11} \times C_{2} \times\right.$ C_{2}) has (APMI).

Algebras with (APMI) congruence lattices

Algebras that have (APMI) congruence lattices

- All \mathbf{A}_{i} finite simple algebras with Mal'cev term. Then $\operatorname{Con}\left(\mathbf{A}_{1} \times \cdots \times \mathbf{A}_{n}\right)$ has (APMI).
- Every finite distributive lattice has (APMI).
- \mathbf{G} finite group, $\mathbf{G} \in \mathcal{V}\left(S_{3}\right)$ Then $\operatorname{Con}(\mathbf{G})$ has (APMI).
- A satisfies (SC1) \Rightarrow Con(A) satisfies (APMI) [Idziak and Słomczyńska, 2001].

Structure of (APMI)-lattices

Theorem [Aichinger and Mudrinski, 2009]
\mathbb{L} finite modular lattice with (APMI), $|\mathbb{L}|>1$. Then $\exists m \in \mathbb{N}$, $\exists \beta_{0}, \ldots, \beta_{m} \in D(\mathbb{L})$ such that

1. $0=\beta_{0}<\beta_{1}<\cdots<\beta_{m}=1$,
2. each $\mathbb{I}\left[\beta_{i}, \beta_{i+1}\right]$ is a simple complemented modular lattice.

Pictures of (APMI)-lattices

$\operatorname{Con}\left(A_{5} \times C_{2} \times C_{2}\right)$

The clone of congruence preserving functions of (APMI)-algebras

Theorem [Aichinger and Mudrinski, 2009]
\mathbf{V} finite expanded group, congruence-(APMI). Then the clone Comp(\mathbf{V}) is generated by $\mathrm{Comp}_{2}(\mathbf{V})$.

Corollary
\mathbf{V} finite expanded group, congruence-(APMI). \mathbf{V} is affine complete if and only if $\mathrm{Comp}_{2}(\mathbf{V})=\mathrm{Pol}_{2}(\mathbf{V})$.

A natural occurrence of the condition (APMI)

Theorem [Aichinger and Mudrinski, 2009] (Unary
compatible function extension property)
\mathbf{V} finite expanded group. TFAE:

1. Every unary partial congruence preserving function on \mathbf{V} can be extended to a total function.
2. All unary total congruence perserving functions on quotients of \mathbf{V} can be lifted to \mathbf{V}.
3. \mathbf{V} is congruence-(APMI), and $\forall \alpha, \beta \in D(\operatorname{Con}(\mathbf{V}))$, $\gamma \in \operatorname{Con}(\mathbf{V}): \alpha \prec_{D(\operatorname{Con}(\mathbf{V}))} \beta, \alpha \prec_{\operatorname{Con}(\mathbf{V})} \gamma<\beta \Rightarrow$ $|0 / \gamma|=2 *|0 / \alpha|$.

Unary compatible function extension property

The group $S_{3} \times C_{2} \times C_{2}$ has the unary CFEP.

The group $\operatorname{SL}(2,5) \times C_{2}$ is not congruence-(APMI), hence (CFEP) fails.

雷 Aichinger，E．（2002）．
2－affine complete algebras need not be affine complete．
Algebra Universalis，47（4）：425－434．
目 Aichinger，E．（2006）．
The near－ring of congruence preserving functions on an expanded group．
Journal of Pure And Applied Algebra，205：74－93．
R Aichinger，E．（2013）．
On the direct decomposition of nilpotent expanded groups．
Communications in Algebra．
to appear．
固 Aichinger，E．and Mudrinski，N．（2009）．
Types of polynomial completeness of expanded groups．
Algebra Universalis，60（3）：309－343．
Aichinger，E．and Mudrinski，N．（2010）．
Some applications of higher commutators in Mal＇cev algebras．

Algebra Universalis, 63(4):367-403.
Aichinger, E. and Mudrinski, N. (2012).
On various concepts of nilpotence for expansions of groups.
Manuscript.

- Aichinger, E. and Mudrinski, N. (2013).

Sequences of commutator operations.
Order, Online First.
围 Berman, J. and Blok, W. J. (1987).
Free spectra of nilpotent varieties.
Algebra Universalis, 24(3):279-282.
(in Bulatov, A. (2001).
On the number of finite Mal'tsev algebras.
In Contributions to general algebra, 13 (Velké Karlovice, 1999/Dresden, 2000), pages 41-54. Heyn, Klagenfurt.

Freese, R. and McKenzie, R. N. (1987).

Commutator Theory for Congruence Modular varieties, volume 125 of London Math. Soc. Lecture Note Ser.
Cambridge University Press.
© Higman, G. (1967).
The orders of relatively free groups.
In Proc. Internat. Conf. Theory of Groups (Canberra, 1965),
pages 153-165. Gordon and Breach, New York.
圆 Hobby, D. and McKenzie, R. (1988).
The structure of finite algebras, volume 76 of
Contemporary mathematics.
American Mathematical Society.
R Idziak, P. M. and Słomczyńska, K. (2001).
Polynomially rich algebras.
J. Pure Appl. Algebra, 156(1):33-68.

园 Kearnes, K. A. (1999).
Congruence modular varieties with small free spectra.
Algebra Universalis, 42(3):165-181.

圊 McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987). Algebras, lattices, varieties, Volume I.
Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, California.
(in Mudrinski, N. (2009).
On Polynomials in Mal'cev Algebras.
PhD thesis, University of Novi Sad.
http://people.dmi.uns.ac.rs/~nmudrinski/Disserta
E Scott, S. D. (1997).
The structure of Ω-groups.
In Nearrings, nearfields and K-loops (Hamburg, 1995),
pages 47-137. Kluwer Acad. Publ., Dordrecht.
(in Smith, J. D. H. (1976).
Mal'cev varieties, volume 554 of Lecture Notes in Math.
Springer Verlag Berlin.

