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The Constraint Satisfaction Problem CSP(B) takes as input a
primitive positive (pp) sentence ®, i.e. of the form

vi...vy o(ve,. .., Y),

where ¢ is a conjunction of atoms, and asks whether B = ¢.

This is equivalent to the Homomorphism Problem — has A a
homomorphism to B?

The structure B is known as the template.
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Finite CSPs occur a lot in nature.
e CSP(Xp,) is graph m-colourability.
e CSP({0,1}; Rnag), where Byag is
{0,1}3\ {(0,0,0),(1,1,1)} is not-all-equal 3-satisfiabilty.
° CSP({O, 1}; Rr11, RT7F, RTFF, RFFF) is 3-satisfiabilty.
e CSP({0,1};{0},{1},{(0,0),(1,1)}) is graph s-t
unreachability.

Also vertex cover, clique and hamilton path — but these require
non-fixed template.

Infinite CSPs also occur a lot in nature (another story...)
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Feder-Vardi dichotomy conjecture. Each CSP(B) is either in P or
is NP-complete.

e Compare with Ladner non-dichotomy for NP.
Still open, but known for:

e Structures size 2 (Schaefer 1978).

e Structures size 3 (Bulatov 2002).

e Structures with unary relations (Bulatov 2003).

e Smooth digraphs (Barto, Kozik and Niven 2010).

e Structures size 4 (Markovi¢ 20117).
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Manuel Bodirsky calls the CSP Kénigsproblem because it is a
beautiful marriage of

e logic (primitive positive model theory)
e combinatorics (structure homomorphism)
e algebra (polymorphism clones and varieties)

to an important class of problems in computer science.
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The Quantified CSP QCSP(B) takes as input a positive Horn (pH)
sentence P, i.e. of the form

WIHVZ sy QV_/ ¢(V17V27 s an))

where ¢ is a conjunction of atoms, and asks whether B = ¢.

QCSP(B) is always in Pspace.

e QCSPs used in Al to model non-monotonic reasoning.
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Previous classifications

QCSP classifications are harder than CSP classifications.

Boolean structures. Dichotomy P, Pspace-complete.
(Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.)

Graphs of permutations. Trichotomy P, NP-complete,
Pspace-complete. (Borner et al. 2002.)

Various digraphs Dichotomies and trichotomies NL,
NP-complete, Pspace-complete. (Madelaine, M. 2006, 2011,
2013; Dapi¢, Markovi¢, M. 2014 etc.)

Structures with 2-semilattice polymorphism. Dichotomy P,
coNP-hard. (Chen 2004.)
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The recent advances in CSP complexity classification are due to
the algebraic approach.

e a k-ary polymorphism of B is a homomorphism from B¥ to B.

The key to this approach is the Galois correspondence
Inv(Pol(B)) = (B)pp
whose consequence is

Pol(B) C Pol(B') = CSP(B') <p CSP(B)
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The algebraic approach exists also for the QCSP.
Inv(sPol(B)) = (B)pn
whose consequence is
sPol(B) C sPol(B') = QCSP(B’) <p QCSP(B).

It appears to be weaker (surjective operations are not closed under
composition) and we have fewer combinatorial constructs.

e Important?
e Konigsproblem?

Assume henceforth that finite B contains constants naming each
element. Now all polymorphisms are idempotent and
sPol(B) = Pol(B).
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Following Chen, for z € B, call B
e logically k-collapsible from source {z}

if truth of a pH sentence can be decided by sub-sentences in which
all but k universal variables are forced to z.

E.g. k := 2 and for the pH sentence
Vx1Vx3y1VxsVxadys E(x1,y1) A E(x2,y1) A E(x3,y2) A E(xa, y2),
we obtain the 2-collapsings

N E(xo,y1) N E(z,y2) N E(z,y2)

Vxidy1Vxs3y2 E(xi,y1) A E(z,y1) A E(x3,y2) A E(2, y2)
Vx13y1Vxa3ys E(x1,y1) A E(z,y1) AN E(z,y2) A E(xa, y2)
Vxody1Vx3Tys E(z,y1) A E(x2, y1) AN E(x3, y2) A E(z, y2)
Vxo3y1Vxa3ys E(z,y1) A E(x2,y1) A E(z,y2) N E(xa, y2)
( NE(z,y1) N E(x3,y2) N\ E(xa, y2)

Vx1Vx23y13ys E(x1, y1)

1 Vx3Vxsdyn E(z, Y1) Middlesex
University
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If B is logically k-collapsible, then QCSP(B) “collapses” to an
ensemble of instances of CSP(B) and QCSP(B) is in NP.

Call an idempotent clone B
e algebraically k-collapsible from source {z}

if it contains f so that for each m, the image under f of set tuples
that are co-ordinate permutations of

k times  m—k times

(B,...,B,{z},...,{z})
is _
m times
(B,...,B).
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Eg m: =4k =2

{z} {2} {z2} B B B

{z} B B {z} {z} B f
B {z} B {z} B {z} —
B B {z} B {z} {z}

W

Theorem (Chen 2006)

If Pol(B) is algebraically k-collapsible from source Z, then B is
logically k-collapsible from source Z.

Theorem (Carvalho, Madelaine, M. 2015)

If B is logically k-collapsible from source Z, then Pol(B) is
algebraically k-collapsible from source Z.
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In many QCSP classiifications, all NP memberships can be
explained uniformly by collapsibility. For example, this is true of all
the classifications we already saw. But,

Theorem (Chen 2008)
There is B on 3-elements so that Pol(B) is “switchable” but not
collapsible, and QCSP(B) is in NP.
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Collapsibility looks like a form of the polynomal generated powers
property (PGP): E.g. m:= 4,k := 2.

{z} {2} {## B B B

{z} B B {z} {z} B f
B {z} B {z} B {z} —
B B {z} B {z} {z}

Imagine for |B| = 2 that each column becomes

W

{z} z z z z
{z} = z z z =z
B = b b b b
B by b b b

and for each xi, x2, x3, x4 € B there exists an f (i.e. this function is

no longer uniform). e
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This is saying that B™ is generated, in Pol(B), from the set of
tuples of the form of co-orindate permutations of
(b1,...,bk,z,...,z), a set that we call Cg{”z’}.

Theorem (Carvalho, Madelaine, M. 2015)

Pol(B) is algebraically k-collapsible from source Z iff, for all m,
B™ is generated in Pol(B) by €7

Message: Collapsibility well understood in idempotent singleton
source case; and quite well understood in general idempotent case.
Conjecture (Chen)

QCSP(B) in NP iff Pol(B) has the PGP; and Pspace-complete
otherwise.
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