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Quasi-affine algebras

Definition
A is quasi-affine < A is a subreduct (a subalgebra of a reduct) of a module. J
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Definition

A is abelian (diagonally normal) < {(a,a) | a € A} is a block of a
congruence of A X A &
A satisfies

te gy oy ug) =t vi, .o k) =t un, e ug) = 1Y, Vi, VE)

for every term ¢.

Remark

Quasi-affine algebras A are abelian.
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Abelian < quasi-affine
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Abelian < quasi-affine

Definition
o an operation is central, if it commutes with all basic operations of A

o A is entropic if all basic operations are central
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Definition
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o an operation is central, if it commutes with all basic operations of A

o A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

o (K.Kearnes) An abelian algebra A has a central cancellative binary
polynomial operation = A is quasi-affine.

o (M.Stronkowski, D.Stanovsky) An abelian algebra A (without nullary
basic operations) has a commutative cancellative binary polynomial
operation = A is quasi-affine.

o (K.Kearnes) A is an abelian, simple, idempotent algebra = A is
quasi-affine.
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Abelian + idempotent < quasi-affine

Is it true that every idempotent abelian algebra is quasi-affine?

Open problem J
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Abelian + idempotent < quasi-affine

Open problem
Is it true that every idempotent abelian algebra is quasi-affine?

Theorem

o (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent
and entropic algebra) is a subreduct of a module over a commutative ring.

Agata Pilitowska (AAA90) 4/13



Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

o (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent
and entropic algebra) is a subreduct of a module over a commutative ring.

o (D.Stanovsky) Abelian differential modes are quasi-affine.

(left, n-ary) differential mode (A, f):
° flx,....,x) =x
o f(f(x,y2, e s Vn)s22y---52n) =FS(F (X225 -3 20n)s V25« -+ s V)
o flx,f a1y -5 Y2m)s -+ s fOnts vy Yun)) = F(, Y215+ -5 Yn1)
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Open problem

Is it true that every idempotent abelian algebra is quasi-affine?

o (A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent
and entropic algebra) is a subreduct of a module over a commutative ring.

o (D.Stanovsky) Abelian differential modes are quasi-affine.

(left, n-ary) differential mode (A, f):
° flx,....,x) =x
o f(f(x,y2, e s Vn)s22y---52n) =FS(F (X225 -3 20n)s V25« -+ s V)
o flx,f a1y -5 Y2m)s -+ s fOnts vy Yun)) = F(, Y215+ -5 Yn1)

Conjecture
All abelian modes are quasi-affine. J
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A binary algebra (Q, -) is called a quandle if it is:
o left distributive: x(yz) = (xy)(xz) for every x,y,z € Q
o idempotent: xx = x for each x € Q

o aleft quasigroup: the equation xu = y has a unique solution u € Q for
every x,y € Q
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Quandles
Definition
A binary algebra (Q, -) is called a quandle if it is:

o left distributive: x(yz) = (xy)(xz) for every x,y,z € Q
o idempotent: xx = x for each x € Q

o aleft quasigroup: the equation xu = y has a unique solution u € Q for
every x,y € QO

Example

o (G,-)-agroup, g h := g 'hg, ConjG = (G,p) - a quandle

Agata Pilitowska (AAA90) 5/13



A binary algebra (Q, -) is called a quandle if it is:
o left distributive: x(yz) = (xy)(xz) for every x,y,z € Q
o idempotent: xx = x for each x € Q

o aleft quasigroup: the equation xu = y has a unique solution u € Q for
every x,y € Q

o (G,-)-agroup, g h := g 'hg, ConjG = (G,) - a quandle

o (A,+) - an abelian group, f € Aut(A, +)
AFf(A,f) = (A, %), with a * b = (id — f)(a) + f(b) - affine (Alexander)
quandle over A

5/13



A binary algebra (Q, -) is called a quandle if it is:
o left distributive: x(yz) = (xy)(xz) for every x,y,z € Q
o idempotent: xx = x for each x € Q

o aleft quasigroup: the equation xu = y has a unique solution u € Q for
every x,y € Q

o (G,-)-agroup, g h := g 'hg, ConjG = (G,) - a quandle

o (A,+) - an abelian group, f € Aut(A, +)
AFf(A,f) = (A, %), with a * b = (id — f)(a) + f(b) - affine (Alexander)
quandle over A

A quandle is quasi-affine if it embeds into an affine quandle.
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Affine quandles

The displacement group - the subgroup of Auz(Q, -):
Dis(Q) = (L,L, ' | a,b € Q).

Forae Q,L,: 0 — Q,x— ax
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Facts
o For an affine quandle Aff(A, k), Dis(Q) ~ Im(id — k).
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Affine quandles

The displacement group - the subgroup of Auz(Q, -):
Dis(Q) = (L,L, ' | a,b € Q).

Forae Q,L,: 0 — Q,x— ax

Facts
o For an affine quandle Aff(A, k), Dis(Q) ~ Im(id — k).
o Affine quandles are medial.

e A quandle (Q, -) is medial if and only if Dis(Q) is commutative.

Agata Pilitowska (AAA90)
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Abelian quandles
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Abelian quandles

Theorem (K.Kearnes) J

An idempotent and abelian groupoid is medial.
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Abelian quandles

Theorem (K.Kearnes)
An idempotent and abelian groupoid is medial.

Remark
Each abelian quandle is medial.
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Abelian quandles

Theorem (K.Kearnes)

An idempotent and abelian groupoid is medial.

Remark

Each abelian quandle is medial.

Theorem (JPSZ)
A quandle Q is abelian iff

o Dis(Q) is commutative

o the only mapping from Dis(Q) with a fixed point is the identity mapping
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affine mesh = triple ((A,'),E[, (@i,j)i,jel; (Cij)ijel) indexed by I where
@ A; are abelian groups
@ ;j:A; — Aj homomorphisms
@ ¢;; € Aj constants
such that for every i,j,/, k € I
@ id — ¢;; is an automorphism of A;
0 ¢;=0
® Yjkpij = Yy kpiy (they commute naturally)
° wjk(cij) = prrlcik — cjk)
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affine mesh = triple ((A,'),E[, (@iJ)iJGI: (Cix/)ixjel) indexed by I where
@ A; are abelian groups
@ ;j:A; — Aj homomorphisms
@ ¢;; € Aj constants
such that for every i,j,/, k € I
@ id — ¢;; is an automorphism of A;
0 ¢;=0
® Yjkpij = Yy kpiy (they commute naturally)
° wjx(cij) = prrlcik — cjk)

sum of an affine mesh = disjoint union of A;, fora € A;, b € A;
axb=cij+¢ija) + (id — ¢;,)(b)
(A;, ) = affine quandle Aff(A;,id — ¢; ;)

An algebra is a medial quandle if and only if it is the sum of an affine mesh. J
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Abelian quandles as the sum of an affine mesh

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh
A= ((AA,...); ; (cij)ijer) over a non-empty set / and A ~ Dis(Q).
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Abelian quandles as the sum of an affine mesh

Theorem (JPSZ)

Each abelian quandel Q is the sum of an affine mesh
A= ((AA,...); ; (cij)ijer) over a non-empty set / and A ~ Dis(Q).

o Case 1. ¢ € Aut(A). All orbits are quasigroups: Aff(A,id — ¢).

0 ~ Aff(A,id — @) x Aff(7,id)

Q is an affine quandle.

o Case 2. ¢ ¢ Aut(A). None of the orbits is a quasigroup.
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Not all abelian quandles are affine quandles.

Example

Q - the sum of the affine mesh: ((Z3,Z3); 0 = 0; (9}))
*x0 1 2|3 4 5
0|0 1 24 5 3
110 1 24 5 3
210 1 24 5 3
311 2 0|3 4 5
411 2 03 4 5
511 2 03 4 5

Q is not an affine quandle.
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Main theorem

Theorem (JPSZ) J

Each abelian quandel is quasi-affine.
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Main theorem

Theorem (JPSZ)

Each abelian quandel is quasi-affine.

Proof.

Idea: To verify the axioms of quasi-affine algebras presented by
M.Stronkowski and D.Stanovsky in Embedding general algebras into
modules, Proc. Amer. Math. Soc. 138/8 (2010). ]
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Case 2. ¢ ¢ Aut(A)

QO-aquandle,e € O, R, : QO — Q;x +—> xe
S C Q - atranswersal of the partition by the relation ker R,
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QO-aquandle,e € O, R, : QO — Q;x +—> xe
S C Q - atranswersal of the partition by the relation ker R,

Dis(Q) = {L.L; " | s € S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y = y.
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Case 2. ¢ ¢ Aut(A)

QO-aquandle,e € O, R, : QO — Q;x +—> xe
S C Q - atranswersal of the partition by the relation ker R,

Dis(Q) = {L,L, " | s € S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y = y.

Theorem (JPSZ)
A non 2-reductive abelian quandle is affine iff it satisfies the condition (1). J
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Thank you for your attention!
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