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Quasi-affine algebras

Definition
A is quasi-affine⇔ A is a subreduct (a subalgebra of a reduct) of a module.

Definition
A is abelian (diagonally normal)⇔ {(a, a) ∣ a ∈ A} is a block of a
congruence of A× A⇔
A satisfies

t(x, u1, . . . , uk) = t(x, v1, . . . , vk) ⇒ t(y, u1, . . . , uk) = t(y, v1, . . . , vk)

for every term t.

Remark
Quasi-affine algebras A are abelian.

Agata Pilitowska (AAA90) Abelian quandles 2 / 13



Quasi-affine algebras

Definition
A is quasi-affine⇔ A is a subreduct (a subalgebra of a reduct) of a module.

Definition
A is abelian (diagonally normal)⇔ {(a, a) ∣ a ∈ A} is a block of a
congruence of A× A⇔
A satisfies

t(x, u1, . . . , uk) = t(x, v1, . . . , vk) ⇒ t(y, u1, . . . , uk) = t(y, v1, . . . , vk)

for every term t.

Remark
Quasi-affine algebras A are abelian.

Agata Pilitowska (AAA90) Abelian quandles 2 / 13



Quasi-affine algebras

Definition
A is quasi-affine⇔ A is a subreduct (a subalgebra of a reduct) of a module.

Definition
A is abelian (diagonally normal)⇔ {(a, a) ∣ a ∈ A} is a block of a
congruence of A× A⇔
A satisfies

t(x, u1, . . . , uk) = t(x, v1, . . . , vk) ⇒ t(y, u1, . . . , uk) = t(y, v1, . . . , vk)

for every term t.

Remark
Quasi-affine algebras A are abelian.

Agata Pilitowska (AAA90) Abelian quandles 2 / 13



Abelian⇔ quasi-affine

Definition
an operation is central, if it commutes with all basic operations of A
A is entropic if all basic operations are central

medial groupoid = entropic groupoid: (xy)(uv) = (xu)(yv)

Theorem

(K.Kearnes) An abelian algebra A has a central cancellative binary
polynomial operation⇒ A is quasi-affine.

(M.Stronkowski, D.Stanovský) An abelian algebra A (without nullary
basic operations) has a commutative cancellative binary polynomial
operation⇒ A is quasi-affine.

(K.Kearnes) A is an abelian, simple, idempotent algebra⇒ A is
quasi-affine.
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Abelian + idempotent⇔ quasi-affine

Open problem
Is it true that every idempotent abelian algebra is quasi-affine?

Theorem

(A.Romanowska, J.D.H.Smith) Every cancellative mode (idempotent
and entropic algebra) is a subreduct of a module over a commutative ring.

(D.Stanovský) Abelian differential modes are quasi-affine.

(left, n-ary) differential mode (A, f ):

f (x, . . . , x) = x

f (f (x, y2, . . . , yn), z2, . . . , zn) = f (f (x, z2, . . . , zn), y2, . . . , yn)

f (x, f (y21, . . . , y2n), . . . , f (yn1, . . . , ynn)) = f (x, y21, . . . , yn1)

Conjecture
All abelian modes are quasi-affine.
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Quandles
Definition
A binary algebra (Q, ⋅) is called a quandle if it is:

left distributive: x(yz) = (xy)(xz) for every x, y, z ∈ Q

idempotent: xx = x for each x ∈ Q

a left quasigroup: the equation xu = y has a unique solution u ∈ Q for
every x, y ∈ Q

Example

(G, ⋅) - a group, g ⊳ h := g−1hg, ConjG = (G, ⊳) - a quandle

(A,+) - an abelian group, f ∈ Aut(A,+)
Aff(A, f ) = (A, ∗), with a ∗ b = (id− f )(a) + f (b) - affine (Alexander)
quandle over A

Remark
A quandle is quasi-affine if it embeds into an affine quandle.
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Affine quandles

The displacement group - the subgroup of Aut(Q, ⋅):

Dis(Q) = ⟨LaL−1
b ∣ a, b ∈ Q⟩.

For a ∈ Q, La : Q→ Q, x 7→ ax

Facts

For an affine quandle Aff(A, k), Dis(Q) ≃ Im(id− k).

Affine quandles are medial.

A quandle (Q, ⋅) is medial if and only if Dis(Q) is commutative.
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Abelian quandles

Theorem (K.Kearnes)
An idempotent and abelian groupoid is medial.

Remark
Each abelian quandle is medial.

Theorem (JPSZ)
A quandle Q is abelian iff

Dis(Q) is commutative

the only mapping from Dis(Q) with a fixed point is the identity mapping
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The structure of medial quandles
affine mesh = triple ((Ai)i∈I, ('i,j)i,j∈I, (ci,j)i,j∈I) indexed by I where

Ai are abelian groups
'i,j : Ai → Aj homomorphisms
ci,j ∈ Aj constants

such that for every i, j, j′, k ∈ I
id− 'i,i is an automorphism of Ai

ci,i = 0
'j,k'i,j = 'j′,k'i,j′ (they commute naturally)
'j,k(ci,j) = 'k,k(ci,k − cj,k)

sum of an affine mesh = disjoint union of Ai, for a ∈ Ai, b ∈ Aj

a ∗ b = ci,j + 'i,j(a) + (id− 'j,j)(b)

(Ai, ∗) = affine quandle Aff(Ai, id− 'i,i)

Theorem (JPSZ)
An algebra is a medial quandle if and only if it is the sum of an affine mesh.
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Abelian quandles as the sum of an affine mesh

Theorem (JPSZ)
Each abelian quandel Q is the sum of an affine mesh
A = ((A,A, ...);'; (ci,j)i,j∈I) over a non-empty set I and A ≃ Dis(Q).

Case 1. ' ∈ Aut(A). All orbits are quasigroups: Aff(A, id− ').

Q ≃ Aff(A, id− ')× Aff(I, id)

Q is an affine quandle.

Case 2. ' /∈ Aut(A). None of the orbits is a quasigroup.
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Not all abelian quandles are affine quandles.

Example

Q - the sum of the affine mesh: ((Z3,Z3);' = 0;
(

0 1
1 0

)
)

∗ 0 1 2 3 4 5
0 0 1 2 4 5 3
1 0 1 2 4 5 3
2 0 1 2 4 5 3
3 1 2 0 3 4 5
4 1 2 0 3 4 5
5 1 2 0 3 4 5

Q is not an affine quandle.
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Main theorem

Theorem (JPSZ)
Each abelian quandel is quasi-affine.

Proof.
Idea: To verify the axioms of quasi-affine algebras presented by
M.Stronkowski and D.Stanovský in Embedding general algebras into
modules, Proc. Amer. Math. Soc. 138/8 (2010).
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Case 2. ' /∈ Aut(A)

Q - a quandle, e ∈ Q, Re : Q→ Q; x 7→ xe
S ⊆ Q - a transwersal of the partition by the relation ker Re

Dis(Q) = {LsL−1
e ∣ s ∈ S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y ≈ y.

Theorem (JPSZ)
A non 2-reductive abelian quandle is affine iff it satisfies the condition (1).

Agata Pilitowska (AAA90) Abelian quandles 12 / 13



Case 2. ' /∈ Aut(A)

Q - a quandle, e ∈ Q, Re : Q→ Q; x 7→ xe
S ⊆ Q - a transwersal of the partition by the relation ker Re

Dis(Q) = {LsL−1
e ∣ s ∈ S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y ≈ y.

Theorem (JPSZ)
A non 2-reductive abelian quandle is affine iff it satisfies the condition (1).

Agata Pilitowska (AAA90) Abelian quandles 12 / 13



Case 2. ' /∈ Aut(A)

Q - a quandle, e ∈ Q, Re : Q→ Q; x 7→ xe
S ⊆ Q - a transwersal of the partition by the relation ker Re

Dis(Q) = {LsL−1
e ∣ s ∈ S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y ≈ y.

Theorem (JPSZ)
A non 2-reductive abelian quandle is affine iff it satisfies the condition (1).

Agata Pilitowska (AAA90) Abelian quandles 12 / 13



Case 2. ' /∈ Aut(A)

Q - a quandle, e ∈ Q, Re : Q→ Q; x 7→ xe
S ⊆ Q - a transwersal of the partition by the relation ker Re

Dis(Q) = {LsL−1
e ∣ s ∈ S} (1)

A quandle Q is (left) 2-reductive, if it satisfies the identity

(xy)y ≈ y.

Theorem (JPSZ)
A non 2-reductive abelian quandle is affine iff it satisfies the condition (1).

Agata Pilitowska (AAA90) Abelian quandles 12 / 13



Thank you for your attention!
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