Chains of subsemigroups

J. D. Mitchell

Joint work with: P. J. Cameron, M. Gadouleau, Y. Péresse

School of Mathematics and Statistics, University of St Andrews

5th of June, 2015

An email from Attila

12th of August 2013 at 08:34:

$$
[\ldots]
$$

An email from Attila

12th of August 2013 at 08:34:
[...]
So, all I need is a subsemigroup chain where the order difference between consecutive elements is as little as possible. In other words, I'm looking for the longest subsemigroup chains. What do you know about these?

An email from Attila

12th of August 2013 at 08:34:
[...]
So, all I need is a subsemigroup chain where the order difference between consecutive elements is as little as possible. In other words, I'm looking for the longest subsemigroup chains. What do you know about these?

Eastie thinks that you may have done some work on this. Most probably for T_{n}.

An email from Attila

12th of August 2013 at 08:34:
[...]
So, all I need is a subsemigroup chain where the order difference between consecutive elements is as little as possible. In other words, I'm looking for the longest subsemigroup chains. What do you know about these?

Eastie thinks that you may have done some work on this. Most probably for T_{n}.
[...]

A reply

30th of August 2013 at 12:55:

A reply

30th of August 2013 at 12:55:
sorry for the delay in replying.

A reply

30th of August 2013 at 12:55:
sorry for the delay in replying.
I somehow came across the reference below while replying to another email this morning

A reply

30th of August 2013 at 12:55:
sorry for the delay in replying.

I somehow came across the reference below while replying to another email this morning
P. J. Cameron, R. Solomon, and A. Turull, Chains of subgroups in symmetric groups, J. Algebra 1271989.

A reply

30th of August 2013 at 12:55:
sorry for the delay in replying.
I somehow came across the reference below while replying to another email this morning

目 P. J. Cameron, R. Solomon, and A. Turull, Chains of subgroups in symmetric groups, J. Algebra 1271989.

Apparently, the largest chain of subgroups in the symmetric group on n-elements is:

A reply

30th of August 2013 at 12:55:
sorry for the delay in replying.
I somehow came across the reference below while replying to another email this morning
(R. J. Cameron, R. Solomon, and A. Turull, Chains of subgroups in symmetric groups, J. Algebra 1271989.

Apparently, the largest chain of subgroups in the symmetric group on n-elements is:

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

A reply

30th of August 2013 at 12:55:

sorry for the delay in replying.
I somehow came across the reference below while replying to another email this morning

R P. J. Cameron, R. Solomon, and A. Turull, Chains of subgroups in symmetric groups, J. Algebra 1271989.

Apparently, the largest chain of subgroups in the symmetric group on n-elements is:

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the binary expansion of n (!!).

The length of a semigroup

Let S be a semigroup. A collection of subsemigroups of S is called a chain if it is totally ordered with respect to inclusion. For example, if

$$
T_{1} \leq T_{2} \leq \cdots \leq S
$$

then $\left(T_{1}, T_{2}, \ldots\right)$ is a chain.

The length of a semigroup

Let S be a semigroup. A collection of subsemigroups of S is called a chain if it is totally ordered with respect to inclusion. For example, if

$$
T_{1} \leq T_{2} \leq \cdots \leq S
$$

then $\left(T_{1}, T_{2}, \ldots\right)$ is a chain.
The length $l(S)$ of a semigroup S is the largest number of non-empty subsemigroups of S in a chain minus 1 .

A longest chain

```
[11],[12],[21],[22]
```

The subsemigroup lattice of T_{2}

A longest chain

```
[11],[12],[21],[22]
```

The subsemigroup lattice of T_{2}

A longest chain

```
[11],[12],[21],[22]
```

The subsemigroup lattice of T_{2}

Wait! What?

Wait! What?

The largest number of non-empty subsemigroups in a chain minus 1???

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1 .

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1 .
Pros:

- same as the definition of the length of a group in the literature

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1.
Pros:

- same as the definition of the length of a group in the literature
- some of the things later in this talk are simpler

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1 .
Pros:

- same as the definition of the length of a group in the literature
- some of the things later in this talk are simpler

Cons:

- if S is a null semigroup ($x y=0$ for all $x, y \in S$), then

$$
l(S)=|S|-1
$$

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1 .
Pros:

- same as the definition of the length of a group in the literature
- some of the things later in this talk are simpler

Cons:

- if S is a null semigroup ($x y=0$ for all $x, y \in S$), then

$$
l(S)=|S|-1
$$

- $l(\varnothing)=-1$

Pros and cons of this definition of length

The largest number of non-empty subsemigroups in a chain minus 1 .
Pros:

- same as the definition of the length of a group in the literature
- some of the things later in this talk are simpler

Cons:

- if S is a null semigroup ($x y=0$ for all $x, y \in S$), then

$$
l(S)=|S|-1
$$

- $l(\varnothing)=-1$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
S_{n}
$$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
S_{n}>S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b}(n)-1}} \times S_{2^{t_{b}(n)}}
$$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
\begin{aligned}
S_{n} & >S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)-1}}} \times S_{2^{t_{b(n)}}}>\cdots \\
& >S_{2^{t_{1}}} \times S_{2^{t_{2}}} \times \cdots \times S_{2^{t_{b}(n)-1}} \times S_{2^{t_{b}(n)}}
\end{aligned}
$$

in $b(n)-1$ steps

- $S_{2^{t}}$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
\begin{aligned}
S_{n} & >S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)-1}}} \times S_{2^{t_{b(n)}}}>\cdots \\
& >S_{2^{t_{1}}} \times S_{2^{t_{2}}} \times \cdots \times S_{2^{t_{b}(n)-1}} \times S_{2^{t_{b(n)}}}
\end{aligned}
$$

in $b(n)-1$ steps

- $S_{2^{t}}>S_{2^{t-1}} \backslash S_{2}$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
\begin{aligned}
S_{n} & >S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)-1}}} \times S_{2^{t_{b(n)}}}>\cdots \\
& >S_{2^{t_{1}}} \times S_{2^{t_{2}}} \times \cdots \times S_{2^{t_{b}(n)-1}} \times S_{2^{t_{b(n)}}}
\end{aligned}
$$

in $b(n)-1$ steps

- $S_{2^{t}}>S_{2^{t-1}} 2 S_{2}>S_{2^{t-1}} \times S_{2^{t-1}}$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
\begin{aligned}
S_{n} & >S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)-1}}} \times S_{2^{t_{b(n)}}}>\cdots \\
& >S_{2^{t_{1}}} \times S_{2^{t_{2}}} \times \cdots \times S_{2^{t_{b}(n)-1}} \times S_{2^{t_{b(n)}}}
\end{aligned}
$$

in $b(n)-1$ steps

- $S_{2^{t}}>S_{2^{t-1}} 2 S_{2}>S_{2^{t-1}} \times S_{2^{t-1}}>\cdots>\mathbf{1}$ for $t>0$

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} is

$$
\left\lceil\frac{3 n}{2}\right\rceil-b(n)-1
$$

where $b(n)$ is the number of ones in the base 2 representation of n.
The $b(n)$ suggests how to find a longest chain:

- If $n=2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)}}$ with $t_{1}>t_{2}>\cdots>t_{b(n)} \geq 1$, then

$$
\begin{aligned}
S_{n} & >S_{2^{t_{1}}+2^{t_{2}}+\cdots+2^{t_{b(n)-1}}} \times S_{2^{t_{b(n)}}}>\cdots \\
& >S_{2^{t_{1}}} \times S_{2^{t_{2}}} \times \cdots \times S_{2^{t_{b}(n)-1}} \times S_{2^{t_{b(n)}}}
\end{aligned}
$$

in $b(n)-1$ steps

- $S_{2^{t}}>S_{2^{t-1}} 2 S_{2}>S_{2^{t-1}} \times S_{2^{t-1}}>\cdots>\mathbf{1}$ for $t>0$
- Then do the bookkeeping.

The symmetric group

Theorem (Cameron-Solomon-Turull '89)

The length of the longest chain of subgroups in the symmetric group S_{n} $i s$

$$
\left\lceil\frac{3 n}{2}\right\rceil-b_{n}-1
$$

where b_{n} is the number of ones in the base 2 representation of n.

The Classification of Finite Simple Groups is needed to show that there is no longer chain.

For some values of n (e.g. 15), there are other chains of the same length.

Subgroup length

The length $l(G)$ of a group G is the largest number of subgroups in a chain minus 1.

Subgroup length

The length $l(G)$ of a group G is the largest number of subgroups in a chain minus 1.

If G is a permutation group on a set X, then a base for G is a sequence of points $\left(x_{1}, \ldots, x_{n}\right)$ in X whose pointwise stabiliser is trivial, and where no x_{i} is fixed by the pointwise stabiliser of $\left(x_{1}, \ldots, x_{i-1}\right)$.

Subgroup length

The length $l(G)$ of a group G is the largest number of subgroups in a chain minus 1 .

If G is a permutation group on a set X, then a base for G is a sequence of points $\left(x_{1}, \ldots, x_{n}\right)$ in X whose pointwise stabiliser is trivial, and where no x_{i} is fixed by the pointwise stabiliser of $\left(x_{1}, \ldots, x_{i-1}\right)$.

Another interpretation: $l(G)$ is the maximum over all permutation actions of G of the size of a base.

Subgroup length

The length $l(G)$ of a group G is the largest number of subgroups in a chain minus 1 .

If G is a permutation group on a set X, then a base for G is a sequence of points $\left(x_{1}, \ldots, x_{n}\right)$ in X whose pointwise stabiliser is trivial, and where no x_{i} is fixed by the pointwise stabiliser of $\left(x_{1}, \ldots, x_{i-1}\right)$.

Another interpretation: $l(G)$ is the maximum over all permutation actions of G of the size of a base.

The question of finding $l\left(S_{n}\right)$ was first raised by László Babai in the context of computational group theory.

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.
Suppose

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{n}=\mathbf{1}
$$

is a composition series for G.

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.
Suppose

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{n}=\mathbf{1}
$$

is a composition series for G. Then

$$
l(G)=\sum_{i=0}^{n} l\left(\frac{G_{i-1}}{G_{i}}\right)
$$

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.
Suppose

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{n}=\mathbf{1}
$$

is a composition series for G. Then

$$
l(G)=\sum_{i=0}^{n} l\left(\frac{G_{i-1}}{G_{i}}\right)
$$

and since G_{i-1} / G_{i} is simple for all i, it suffices to know the length of the simple groups.

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.
Suppose

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{n}=\mathbf{1}
$$

is a composition series for G. Then

$$
l(G)=\sum_{i=0}^{n} l\left(\frac{G_{i-1}}{G_{i}}\right)
$$

and since G_{i-1} / G_{i} is simple for all i, it suffices to know the length of the simple groups.

Solomon and Turull, with various co-authors, have worked out exact values or good bounds for all the finite simple groups.

Chains of subgroups

Proposition

If N is a normal subgroup of a group G, then $l(G)=l(N)+l(G / N)$.
Suppose

$$
G=G_{0} \triangleright G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{n}=\mathbf{1}
$$

is a composition series for G. Then

$$
l(G)=\sum_{i=0}^{n} l\left(\frac{G_{i-1}}{G_{i}}\right)
$$

and since G_{i-1} / G_{i} is simple for all i, it suffices to know the length of the simple groups.

Solomon and Turull, with various co-authors, have worked out exact values or good bounds for all the finite simple groups.
We regard a formula containing $l(G)$ for some group G as "known".

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem.

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

The extreme case is that of the null semigroups S where $l(S)=|S|-1$.

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

The extreme case is that of the null semigroups S where $l(S)=|S|-1$.
Can we calculate the maximum length of a chain in some naturally-occurring semigroups

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

The extreme case is that of the null semigroups S where $l(S)=|S|-1$.
Can we calculate the maximum length of a chain in some naturally-occurring semigroups, such as:

- T_{n} the full transformation monoid of all maps from $\{1, \ldots, n\}$ to itself?

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

The extreme case is that of the null semigroups S where $l(S)=|S|-1$.
Can we calculate the maximum length of a chain in some naturally-occurring semigroups, such as:

- T_{n} the full transformation monoid of all maps from $\{1, \ldots, n\}$ to itself?
- I_{n} the symmetric inverse monoid of all bijections between subsets of $\{1, \ldots, n\}$?

Semigroups

If G is a group, then $l(G)$ is at most $\log _{2}(|G|)$ by Lagrange's Theorem. No such bound exists for semigroups.

The extreme case is that of the null semigroups S where $l(S)=|S|-1$.
Can we calculate the maximum length of a chain in some naturally-occurring semigroups, such as:

- T_{n} the full transformation monoid of all maps from $\{1, \ldots, n\}$ to itself?
- I_{n} the symmetric inverse monoid of all bijections between subsets of $\{1, \ldots, n\}$?

Analogues of Cayley's theorem states that every finite semigroup is isomorphic to a subsemigroup of some T_{n}, and that every finite inverse semigroup is isomorphic to an inverse subsemigroup of some I_{n}.

Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

$$
l(T) \leq l(S)
$$

Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

$$
l(T) \leq l(S)
$$

Quotients are slightly more difficult: the kernel of a group homomorphism is a special kind of subgroup.

Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

$$
l(T) \leq l(S)
$$

Quotients are slightly more difficult: the kernel of a group homomorphism is a special kind of subgroup.

The kernel of a semigroup homomorphism is a congruence (a partition of S compatible with the multiplication).

Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

$$
l(T) \leq l(S)
$$

Quotients are slightly more difficult: the kernel of a group homomorphism is a special kind of subgroup.

The kernel of a semigroup homomorphism is a congruence (a partition of S compatible with the multiplication).

If ρ is a congruence on S, then $l(S / \rho) \leq l(S)$.

Subsemigroups and quotients

If T is a subsemigroup of a semigroup S, then

$$
l(T) \leq l(S)
$$

Quotients are slightly more difficult: the kernel of a group homomorphism is a special kind of subgroup.

The kernel of a semigroup homomorphism is a congruence (a partition of S compatible with the multiplication).

If ρ is a congruence on S, then $l(S / \rho) \leq l(S)$.
None of these facts is very useful for us!

Semigroup ideals

An ideal of a semigroup S is a subset I which is closed under left and right multiplication by elements of S. It is a subsemigroup.

Semigroup ideals

An ideal of a semigroup S is a subset I which is closed under left and right multiplication by elements of S. It is a subsemigroup.

The Rees quotient of S by I is defined as follows: the elements are $(S \backslash I) \cup\{0\}$ and the multiplication is defined by

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in S \backslash I \\ 0 & \text { otherwise }\end{cases}
$$

Semigroup ideals

An ideal of a semigroup S is a subset I which is closed under left and right multiplication by elements of S. It is a subsemigroup.

The Rees quotient of S by I is defined as follows: the elements are $(S \backslash I) \cup\{0\}$ and the multiplication is defined by

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in S \backslash I \\ 0 & \text { otherwise }\end{cases}
$$

Proposition (cf. Ganyushkin-Livinsky '11)

Let S be a semigroup and let I be an ideal of S. Then

$$
l(S)=l(I)+l(S / I)
$$

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^{1} x=S^{1} y$
- $x \mathscr{R} y$ if $x S^{1}=y S^{1}$
- $x \mathscr{J} y$ if $S^{1} x S^{1}=S^{1} y S^{1}$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

Green's relations

If S is a semigroup and $x, y \in S$, then we write

- $x \mathscr{L} y$ if $S^{1} x=S^{1} y$
- $x \mathscr{R} y$ if $x S^{1}=y S^{1}$
- $x \mathscr{J} y$ if $S^{1} x S^{1}=S^{1} y S^{1}$
- $x \mathscr{H} y$ if $x \mathscr{L} y$ and $x \mathscr{R} y$

These relations are equivalences called Green's relations, and their classes are Green's classes.

Monogenic semigroups

Let S be a semigroup generated by a single element s where 5 and 7 are the least numbers such that $s^{5+7}=s^{5}$.
The \mathscr{J}-classes of S ordered by containment of ideals look like \longrightarrow

Monogenic semigroups

Let S be a semigroup generated by a single element s where 5 and 7 are the least numbers such that $s^{5+7}=s^{5}$. The \mathscr{J}-classes of S ordered by containment of ideals look like \longrightarrow

Monogenic semigroups

Let S be a semigroup generated by a single element s where 5 and 7 are the least numbers such that $s^{5+7}=s^{5}$. The \mathscr{J}-classes of S ordered by containment of ideals look like \longrightarrow

Proposition

Let S be a semigroup generated by a single element s and let $m, n \in \mathbb{N}$ be the least numbers such that $s^{m+n}=s^{m}$. Then $l(S)=m+\Omega(n)-1$, where $\Omega(n)$ is the number of prime power divisors of n.

Monogenic semigroups

Let S be a semigroup generated by a single element s where 5 and 7 are the least numbers such that $s^{5+7}=s^{5}$. The \mathscr{J}-classes of S ordered by containment of ideals look like \longrightarrow

Proposition

Let S be a semigroup generated by a single element s and let $m, n \in \mathbb{N}$ be the least numbers such that $s^{m+n}=s^{m}$. Then $l(S)=m+\Omega(n)-1$, where $\Omega(n)$ is the number of prime power divisors of n.

Proof

Repeatedly apply the $l(S)=l(I)+l(S / I)$ lemma: $l(S)=m+l\left(C_{n}\right)-1$ and $l\left(C_{n}\right)=\Omega(n)$.

Monogenic semigroups

Let S be a semigroup generated by a single element s where 5 and 7 are the least numbers such that $s^{5+7}=s^{5}$. The \mathscr{J}-classes of S ordered by containment of ideals look like \longrightarrow

Proposition

Let S be a semigroup generated by a single element s and let $m, n \in \mathbb{N}$ be the least numbers such that $s^{m+n}=s^{m}$. Then $l(S)=m+\Omega(n)-1$, where $\Omega(n)$ is the number of prime power divisors of n.

Proof

Repeatedly apply the $l(S)=l(I)+l(S / I)$ lemma: $l(S)=m+l\left(C_{n}\right)-1$ and $l\left(C_{n}\right)=\Omega(n)$.

So, in the example, $l(S)=5+1-1=5$.

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

A semigroup S is regular if for every $x \in S$ there exists $y \in S$ such that $x y x=x$.

Principal factors

The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

A semigroup S is regular if for every $x \in S$ there exists $y \in S$ such that $x y x=x$.

Lemma

Let S be a finite regular semigroup and let $J_{1}, J_{2}, \ldots, J_{m}$ be the \mathscr{J}-classes of S. Then

$$
l(S)=l\left(J_{1}^{*}\right)+l\left(J_{2}^{*}\right)+\cdots+l\left(J_{m}^{*}\right)-1
$$

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J}-classes J_{1}, \ldots, J_{m}. If $n_{i} \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R}-classes in J_{i}, and G_{i} is any maximal subgroup of S contained in J_{i}, then

$$
l(S)=-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right)
$$

Inverse semigroups

An inverse semigroup is a semigroup S such that for all $x \in S$, there exists a unique $x^{-1} \in S$ where $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

Theorem (cf. Ganyushkin and Livinsky (2011))

Let S be a finite inverse semigroup with \mathscr{J}-classes J_{1}, \ldots, J_{m}. If $n_{i} \in \mathbb{N}$ denotes the number of \mathscr{L} - and \mathscr{R}-classes in J_{i}, and G_{i} is any maximal subgroup of S contained in J_{i}, then

$$
\begin{aligned}
l(S) & =-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right) \\
& =-1+\sum_{i=1}^{m} n_{i}\left(l\left(G_{i}\right)+1\right)+\frac{n_{i}\left(n_{i}-1\right)}{2}\left|G_{i}\right|+\left(n_{i}-1\right)
\end{aligned}
$$

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

If J_{i} is the \mathscr{J}-class of I_{n} consisting of elements f with $|\operatorname{dom}(f)|=i$, then the number of \mathscr{L} - and \mathscr{R}-classes in J_{i} is $\binom{n}{i}$.

The symmetric inverse monoid, part I

The symmetric inverse monoid I_{n} consists of all bijections between subsets of $X=\{1, \ldots, n\}$.
If $f \in I_{n}$, then we define:

$$
\begin{aligned}
\operatorname{dom}(f) & =\{x \in X:(x) f \text { is defined }\} \\
\operatorname{im}(f) & =\{(x) f \in X: x \in \operatorname{dom}(f)\}
\end{aligned}
$$

If $f, g \in I_{n}$, then

- $f \mathscr{L} g$ if and only if $\operatorname{im}(f)=\operatorname{im}(g)$;
- $f \mathscr{R} g$ if and only if $\operatorname{dom}(f)=\operatorname{dom}(g)$;
- $f \mathscr{J} g$ if and only if $|\operatorname{dom}(f)|=|\operatorname{dom}(g)|$.

If J_{i} is the \mathscr{J}-class of I_{n} consisting of elements f with $|\operatorname{dom}(f)|=i$, then the number of \mathscr{L} - and \mathscr{R}-classes in J_{i} is $\binom{n}{i}$. Thus

$$
l\left(I_{n}\right)=-1+\sum_{i=1}^{n}\binom{n}{i}\left(l\left(S_{i}\right)+1\right)+\frac{\left.\binom{n}{i}\binom{n}{i}-1\right)}{2}\left|S_{i}\right|+\binom{n}{i}-1 .
$$

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

We used the formula in the previous theorem to show that:

Theorem

$l\left(I_{n}\right) /\left|I_{n}\right| \rightarrow 1 / 2$ as $n \rightarrow \infty$.

The symmetric inverse monoid, part II

n	1	2	3	4	5	6	7	8
$\left\|I_{n}\right\|$	2	7	34	209	1546	13327	130922	1441729
$l\left(I_{n}\right)$	1	6	25	116	722	5956	59243	667500

We used the formula in the previous theorem to show that:

Theorem

$l\left(I_{n}\right) /\left|I_{n}\right| \rightarrow 1 / 2$ as $n \rightarrow \infty$.

The same limit holds for various other well-known inverse semigroups: the dual symmetric inverse monoid, the semigroup of partial order-preserving injective mappings, and so on.

The full transformation monoid

Our results are much less precise for T_{n}. Recall that $\left|T_{n}\right|=n^{n}$.

The full transformation monoid

Our results are much less precise for T_{n}. Recall that $\left|T_{n}\right|=n^{n}$.

Theorem

$$
l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)
$$

The full transformation monoid

Our results are much less precise for T_{n}. Recall that $\left|T_{n}\right|=n^{n}$.

Theorem

$l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)$.

Here are the first few values:

n	2	3	4	5	6	7	8
n^{n}	4	27	256	3125	46656	823543	16777216
$a(n)$	0	0	7	110	1921	37795	835290

The full transformation monoid

Our results are much less precise for T_{n}. Recall that $\left|T_{n}\right|=n^{n}$.

Theorem

$l\left(T_{n}\right) \geq a(n)=\mathrm{e}^{-2} n^{n}-2 \mathrm{e}^{-2}\left(1-\mathrm{e}^{-1}\right) n^{n-1 / 3}-o\left(n^{n-1 / 3}\right)$.

Here are the first few values:

n	2	3	4	5	6	7	8
n^{n}	4	27	256	3125	46656	823543	16777216
$a(n)$	0	0	7	110	1921	37795	835290

We don't know if $l\left(T_{n}\right) /\left|T_{n}\right|$ tends to a limit as $n \rightarrow \infty$.

Number of subsemigroups

The number of subgroups of the symmetric group S_{n} is at least roughly $2^{n^{2} / 16}$ 。

Number of subsemigroups

The number of subgroups of the symmetric group S_{n} is at least roughly $2^{n^{2} / 16}$.

Pyber found an upper bound of the form $2^{c n^{2}}$ for the number of subgroups.

Number of subsemigroups

The number of subgroups of the symmetric group S_{n} is at least roughly $2^{n^{2} / 16}$.

Pyber found an upper bound of the form $2^{c n^{2}}$ for the number of subgroups.

In the extreme case of the null semigroup, the number of subsemigroups can be within a constant factor of $2^{|S|}$.

Number of subsemigroups

The number of subgroups of the symmetric group S_{n} is at least roughly $2^{n^{2} / 16}$.

Pyber found an upper bound of the form $2^{c n^{2}}$ for the number of subgroups.

In the extreme case of the null semigroup, the number of subsemigroups can be within a constant factor of $2^{|S|}$.

Theorem

The number of subsemigroups of T_{n} is at least $2^{c n^{n-1 / 2}}$ where

$$
c=\frac{\mathrm{e}^{-2}}{3 \sqrt{3\left(\mathrm{e}^{-1}-2 \mathrm{e}^{-2}\right)}} .
$$

Note that this is a bit less that $2^{c\left|T_{n}\right|}$ (because of the $-1 / 2$ in the exponent).

Minimum number of generators

Theorem

The smallest number $d(n)$ such that any subsemigroup of T_{n} can be generated by $d(n)$ elements is at least $(c-o(1)) n^{n-1 / 2}$ where c is the constant in the previous theorem.

Minimum number of generators

Theorem

The smallest number $d(n)$ such that any subsemigroup of T_{n} can be generated by $d(n)$ elements is at least $(c-o(1)) n^{n-1 / 2}$ where c is the constant in the previous theorem.

The corresponding parameter for S_{n} is much smaller.

Theorem (A. McIver and P. Neumann)

If G is any subgroup of the symmetric group S_{n}, then

$$
d(G) \leq \max \left\{2,\left\lceil\frac{n}{2}\right\rceil\right\}
$$

Minimum number of generators

Theorem

The smallest number $d(n)$ such that any subsemigroup of T_{n} can be generated by $d(n)$ elements is at least $(c-o(1)) n^{n-1 / 2}$ where c is the constant in the previous theorem.

The corresponding parameter for S_{n} is much smaller.
Theorem (A. McIver and P. Neumann)
If G is any subgroup of the symmetric group S_{n}, then

$$
d(G) \leq \max \left\{2,\left\lceil\frac{n}{2}\right\rceil\right\} .
$$

Jerrum gave a weaker bound of $n-1$ but with an algorithmic proof. Given a sequence of elements of S_{n} there is a polynomial time algorithm that produces at most $n-1$ elements generating the same group.

An (impractical) algorithm for finding the length The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

An (impractical) algorithm for finding the length The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

If S is a semigroup and T is a subsemigroup of S, then T is maximal if it is not contained in any other proper subsemigroups.

An (impractical) algorithm for finding the length The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

If S is a semigroup and T is a subsemigroup of S, then T is maximal if it is not contained in any other proper subsemigroups.

Suppose that S is a finite regular semigroup. If the \mathscr{J}-classes of S are $J_{1}, J_{2}, \ldots, J_{m}$, then

$$
l(S)=-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right)
$$

An (impractical) algorithm for finding the length The principal factor J^{*} of a \mathscr{J}-class J is the set $J \cup\{0\}$ with multiplication

$$
x * y= \begin{cases}x y & \text { if } x, y, x y \in J \\ 0 & \text { otherwise }\end{cases}
$$

If S is a semigroup and T is a subsemigroup of S, then T is maximal if it is not contained in any other proper subsemigroups.

Suppose that S is a finite regular semigroup. If the \mathscr{J}-classes of S are $J_{1}, J_{2}, \ldots, J_{m}$, then

$$
\begin{aligned}
l(S) & =-1+\sum_{i=1}^{m} l\left(J_{i}^{*}\right) \\
& =-1+\sum_{i=1}^{m} \max \left\{l(T): T \leq J_{i}^{*}, T \text { maximal }\right\}+1
\end{aligned}
$$

The Rees Theorem

If G is a group, I and J are sets, and $P=\left(p_{j, i}\right)_{j \in J, i \in I}$, then the Rees 0 -matrix semigroup $\mathcal{M}^{0}[I, G, J ; P]$ is the set $(I \times G \times J) \cup\{0\}$ with multiplication:

$$
(i, g, j)(k, h, l)= \begin{cases}\left(i, g p_{j, k} h, l\right) & \text { if } p_{j, k} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

The Rees Theorem

If G is a group, I and J are sets, and $P=\left(p_{j, i}\right)_{j \in J, i \in I}$, then the Rees 0 -matrix semigroup $\mathcal{M}^{0}[I, G, J ; P]$ is the set $(I \times G \times J) \cup\{0\}$ with multiplication:

$$
(i, g, j)(k, h, l)= \begin{cases}\left(i, g p_{j, k} h, l\right) & \text { if } p_{j, k} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (Rees' Theorem)

Let S be a finite semigroup and let J be a regular \mathscr{J}-class of S. Then $J^{*} \cong \mathcal{M}^{0}[I, G, J ; P]$ where I, J are finite sets, G is a finite group, P is $a|J| \times|I|$ matrix with entries in $G \cup\{0\}$, and every row and column of P contains a non-zero entry.

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S.

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S. Then M (except for some trivial cases) is of the form:

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S. Then M (except for some trivial cases) is of the form:
(a) $\mathcal{M}^{0}[I, H, J ; P]$ where H is a maximal subgroup of G;

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S. Then M (except for some trivial cases) is of the form:
(a) $\mathcal{M}^{0}[I, H, J ; P]$ where H is a maximal subgroup of G;
(b) $\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for every $i \in I$ s.t. this semigroup is regular;

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S. Then M (except for some trivial cases) is of the form:
(a) $\mathcal{M}^{0}[I, H, J ; P]$ where H is a maximal subgroup of G;
(b) $\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for every $i \in I$ s.t. this semigroup is regular;
(c) $\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for every $j \in J$ s.t. this semigroup is regular;

Maximal subsemigroups

Theorem (Graham-Graham-Rhodes '68)

Let $S=\mathcal{M}^{0}[I, G, J ; P]$ be a finite regular Rees 0-matrix semigroup, and let M be a maximal subsemigroup of S. Then M (except for some trivial cases) is of the form:
(a) $\mathcal{M}^{0}[I, H, J ; P]$ where H is a maximal subgroup of G;
(b) $\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for every $i \in I$ s.t. this semigroup is regular;
(c) $\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for every $j \in J$ s.t. this semigroup is regular;
(d) $\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right)$ for some $I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y$, and $X \times Y$ is a maximal"rectangle" of zeros.

An example

Remove a row

$\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for some $i \in I$

Remove a row

$\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for some $i \in I$

Remove a row

$\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for some $i \in I$

Remove a row

$\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for some $i \in I$

Remove a row

$\mathcal{M}^{0}[I \backslash\{i\}, G, J ; P]$ for some $i \in I$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Remove a column

$\mathcal{M}^{0}[I, G, J \backslash\{j\} ; P]$ for some $j \in J$

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal rectangles of zeros

$X \times Y$ is a maximal"rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

$\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right)$ for some $I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y$, and $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

 $\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right)$ for some $I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y$, and $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

 $\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right)$ for some $I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y$, and $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

 $\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right)$ for some $I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y$, and $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

$$
\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and }
$$ $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

$$
\begin{aligned}
& \mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and } \\
& X \times Y \text { is a maximal "rectangle" of zeros. }
\end{aligned}
$$

Maximal subsemigroups from maximal rectangles

$$
\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and }
$$ $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

$$
\begin{aligned}
& \mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and } \\
& X \times Y \text { is a maximal "rectangle" of zeros. }
\end{aligned}
$$

Maximal subsemigroups from maximal rectangles

$$
\mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and }
$$ $X \times Y$ is a maximal "rectangle" of zeros.

Maximal subsemigroups from maximal rectangles

$$
\begin{aligned}
& \mathcal{M}^{0}[I, G, J ; P] \backslash\left(I^{\prime} \times G \times J^{\prime}\right) \text { for some } I^{\prime}=I \backslash X, J^{\prime}=J \backslash Y \text {, and } \\
& X \times Y \text { is a maximal "rectangle" of zeros. }
\end{aligned}
$$

Principal factors of inverse semigroups

If G is a group, and $n \in \mathbb{N}$, then define $B(G, n)$ to be $\{1, \ldots, n\} \times G \times\{1, \ldots, n\}$ where

$$
(i, g, j)(k, h, l)= \begin{cases}(i, g h, l) & \text { if } j=k \\ 0 & \text { otherwise }\end{cases}
$$

Such a $B(G, n)$ is called a Brandt semigroup.

Principal factors of inverse semigroups

If G is a group, and $n \in \mathbb{N}$, then define $B(G, n)$ to be $\{1, \ldots, n\} \times G \times\{1, \ldots, n\}$ where

$$
(i, g, j)(k, h, l)= \begin{cases}(i, g h, l) & \text { if } j=k \\ 0 & \text { otherwise }\end{cases}
$$

Such a $B(G, n)$ is called a Brandt semigroup.
In an inverse semigroup S, every principal factor $J^{*} \cong B(G, n)$ where G is a group and n is the number of \mathscr{L} - and \mathscr{R}-classes in the \mathscr{J}-class J.

Principal factors of inverse semigroups

If G is a group, and $n \in \mathbb{N}$, then define $B(G, n)$ to be $\{1, \ldots, n\} \times G \times\{1, \ldots, n\}$ where

$$
(i, g, j)(k, h, l)= \begin{cases}(i, g h, l) & \text { if } j=k \\ 0 & \text { otherwise }\end{cases}
$$

Such a $B(G, n)$ is called a Brandt semigroup.
In an inverse semigroup S, every principal factor $J^{*} \cong B(G, n)$ where G is a group and n is the number of \mathscr{L} - and \mathscr{R}-classes in the \mathscr{J}-class J.

Theorem (Graham-Graham-Rhodes '68)

Let $S=B(G, n)$ be a finite Brandt semigroup, and let M be a maximal subsemigroup of S. Then M is of the form:
(a) $B(H, n)$ where H is a maximal subgroup of G;
(b) $B(G, n) \backslash\left(I^{\prime} \times G \times I^{\prime \prime}\right)$ for some $I^{\prime}=I \backslash X, I^{\prime \prime}=I \backslash Y$, and $X \times Y$ is a maximal "rectangle" of zeros.

Can't remove a row or column

Can't remove a row or column

Can't remove a row or column

Maximal rectangles of zeros

$$
B(G, n) \backslash(\{2,3,4\} \times G \times\{1,5, \ldots, 10\})
$$

The length of the symmetric inverse monoid

To find the length of the symmetric inverse monoid it suffices to show that

$$
l(B(G, n))=n(l(G)+1)+\frac{n(n-1)}{2}|G|+(n-1) .
$$

The length of the symmetric inverse monoid

To find the length of the symmetric inverse monoid it suffices to show that

$$
l(B(G, n))=n(l(G)+1)+\frac{n(n-1)}{2}|G|+(n-1) .
$$

From Graham-Graham-Rhodes either

$$
l(B(G, n))=1+l(B(H, n))
$$

for some maximal subgroup H of G

The length of the symmetric inverse monoid

To find the length of the symmetric inverse monoid it suffices to show that

$$
l(B(G, n))=n(l(G)+1)+\frac{n(n-1)}{2}|G|+(n-1) .
$$

From Graham-Graham-Rhodes either

$$
l(B(G, n))=1+l(B(H, n))
$$

for some maximal subgroup H of G, or

$$
l(B(G, n))=1+l(B(G, n) \backslash(J \times G \times K))
$$

where J and K partition I.

The length of the symmetric inverse monoid

To find the length of the symmetric inverse monoid it suffices to show that

$$
l(B(G, n))=n(l(G)+1)+\frac{n(n-1)}{2}|G|+(n-1) .
$$

From Graham-Graham-Rhodes either

$$
l(B(G, n))=1+l(B(H, n))
$$

for some maximal subgroup H of G, or

$$
l(B(G, n))=1+l(B(G, n) \backslash(J \times G \times K))
$$

where J and K partition I.
It turns out that the latter exceeds the former.

A longest chain in I_{3}

	S3	
C2	2	2
2	C2	2
2	2	C2
1	1	1
1	1	1
1	1	1
	1	

A longest chain in I_{3}

	C3	
C2	2	2
2	C2	2
2	2	C2
1	1	1
1	1	1
1	1	1
	1	

A longest chain in I_{3}

2

A longest chain in I_{3}

3

A longest chain in I_{3}

A longest chain in I_{3}

9

A longest chain in I_{3}

A longest chain in I_{3}

A longest chain in I_{3}

15

A longest chain in I_{3}

16

A longest chain in I_{3}

17

A longest chain in I_{3}

18

A longest chain in I_{3}

A longest chain in I_{3}

20

A longest chain in I_{3}

21

A longest chain in I_{3}

22

A longest chain in I_{3}

23

A longest chain in I_{3}

24

A longest chain in I_{3}

25

What is a "rectangle" of zeros?

The image of a transformation f is the set

$$
\operatorname{im}(f)=\{x: \exists y, x=(y) f\}
$$

What is a "rectangle" of zeros?

The image of a transformation f is the set

$$
\operatorname{im}(f)=\{x: \exists y, x=(y) f\}
$$

The kernel of a transformation f is the partition

$$
\operatorname{ker}(f)=\{(x, y):(x) f=(y) f\}
$$

What is a "rectangle" of zeros?

The image of a transformation f is the set

$$
\operatorname{im}(f)=\{x: \exists y, x=(y) f\}
$$

The kernel of a transformation f is the partition

$$
\operatorname{ker}(f)=\{(x, y):(x) f=(y) f\}
$$

A subset A of $\{1, \ldots, n\}$ is a transversal of a partition if every part contains exactly one element in A.

What is a "rectangle" of zeros?

The image of a transformation f is the set

$$
\operatorname{im}(f)=\{x: \exists y, x=(y) f\}
$$

The kernel of a transformation f is the partition

$$
\operatorname{ker}(f)=\{(x, y):(x) f=(y) f\}
$$

A subset A of $\{1, \ldots, n\}$ is a transversal of a partition if every part contains exactly one element in A.

If f and g are transformations with $|\operatorname{im}(f)|=|\operatorname{im}(g)|=k$, then $|\operatorname{im}(f g)|=k$ if and only if $\operatorname{im}(f)$ is a transversal of $\operatorname{ker}(g)$.

Problem?

A "rectangle" of zeros is: a set P_{k} of k-partitions of $\{1, \ldots, n\}$, and a set S_{k} of k-subsets, with the property that no element of S_{k} is a transversal for any element of P_{k}.

Problem?

A "rectangle" of zeros is: a set P_{k} of k-partitions of $\{1, \ldots, n\}$, and a set S_{k} of k-subsets, with the property that no element of S_{k} is a transversal for any element of P_{k}.

The set of transformations with kernel in P_{k} and image in S_{k} is a null semigroup; this is a rectangle of zeros.

Problem?

A "rectangle" of zeros is: a set P_{k} of k-partitions of $\{1, \ldots, n\}$, and a set S_{k} of k-subsets, with the property that no element of S_{k} is a transversal for any element of P_{k}.

The set of transformations with kernel in P_{k} and image in S_{k} is a null semigroup; this is a rectangle of zeros.

Since $\left(P_{k}, S_{k}\right)$ corresponds to a null semigroup, it follows that every subset is a subsemigroup

Problem?

A "rectangle" of zeros is: a set P_{k} of k-partitions of $\{1, \ldots, n\}$, and a set S_{k} of k-subsets, with the property that no element of S_{k} is a transversal for any element of P_{k}.

The set of transformations with kernel in P_{k} and image in S_{k} is a null semigroup; this is a rectangle of zeros.

Since $\left(P_{k}, S_{k}\right)$ corresponds to a null semigroup, it follows that every subset is a subsemigroup and so

$$
l\left(T_{n}\right) \geq-1+\sum_{k=1}^{n}\left|P_{k}\right| \cdot\left|S_{k}\right| \cdot k!
$$

Problem?

A "rectangle" of zeros is: a set P_{k} of k-partitions of $\{1, \ldots, n\}$, and a set S_{k} of k-subsets, with the property that no element of S_{k} is a transversal for any element of P_{k}.

The set of transformations with kernel in P_{k} and image in S_{k} is a null semigroup; this is a rectangle of zeros.

Since $\left(P_{k}, S_{k}\right)$ corresponds to a null semigroup, it follows that every subset is a subsemigroup and so

$$
l\left(T_{n}\right) \geq-1+\sum_{k=1}^{n}\left|P_{k}\right| \cdot\left|S_{k}\right| \cdot k!
$$

Maximise:

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|
$$

Maximal leagues

Maximal leagues

Maximal leagues

		.	*			-		-	*			+									+	.					-
*		.	*		-		-			*			*		-						*						
*		-								.				-		*				*		*		-	*		
	-								.	*		.	*		-		-					*		-			
*	*			-	-	-	*	-									-							-			*
*	*					-						-		-	-					*			*			-	
			*		-			-				*		-		*	-		*							-	
					-								*	-					-		-	,	.		-		-
		-				-			*				*			-	-						*		-	-	
			*				,								*	*			-	,			-	*			-

$*$	$*$	\cdot			$*$					$*$	$*$	$*$		$*$
$*$		$*$		$*$	$*$	$*$	$*$	$*$		$*$				
$*$	$*$		$*$		$*$		$*$	$*$	$*$			$*$		
$*$			$*$	$*$	$*$	$*$			$*$		$*$			$*$
	$*$	\cdot	$*$	$*$		$*$			$*$	$*$		$*$		
	$*$	$*$	$*$	$*$	$*$			$*$					$*$	$*$
$* *$	$*$	$*$				$*$		$*$	$*$		$*$		$*$	
	$*$			$*$		$*$	$*$	$*$			$*$	$*$		$*$
					$*$	$*$		$*$	$*$	$*$		$*$	$*$	$*$
$*$		$*$		$*$			$*$		$*$			$*$	$*$	$*$

Maximal leagues

				\cdots																											TV
\cdots																															
-																															

σ	1		\checkmark	\bigcirc		\square		-	\cdots	\square	T	\cdots	\cdots		1	$\square \cdot$	\cdot	-															$\square \cdot$	\square	1	1	\square^{1}	\square	T	1				\cdots							\cdots				-19
-				-		,	,	-				-		,		-						-			-					-	-	-	-		\cdot							-	-				-			-					
-			-										-			-									,																														
-																																																							
-																																																							
-																																																							
-																																																							
-																-																								.			.												
-															-																.									,															
-																																																							
-															-																																								
-																																																							
-															-																																								,
-															-														\cdots																										
-																																																							.
-															-														\cdot																										
\square															1																																								

	F	.			T			,				\cdots		\cdots						\cdot		\square
										-												
-																						
-														-								
-																						.
														.								
-																						
																						\bigcirc

目

Two strategies

1. Let P_{k} consist of all k-partitions having n as a singleton, and let S_{k} consist of all k-subsets not containing n. Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

Two strategies

1. Let P_{k} consist of all k-partitions having n as a singleton, and let S_{k} consist of all k-subsets not containing n. Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|=\binom{n-1}{k} S(n-1, k-1) .
$$

Two strategies

1. Let P_{k} consist of all k-partitions having n as a singleton, and let S_{k} consist of all k-subsets not containing n. Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|=\binom{n-1}{k} S(n-1, k-1) .
$$

2. Let P_{k} be the set of all k-partitions with 1 and 2 in the same class, and let S_{k} be the set of all k-subsets containing 1 and 2 . Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|=\binom{n-2}{k-2} S(n-1, k) .
$$

Two strategies

1. Let P_{k} consist of all k-partitions having n as a singleton, and let S_{k} consist of all k-subsets not containing n. Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|=\binom{n-1}{k} S(n-1, k-1)
$$

2. Let P_{k} be the set of all k-partitions with 1 and 2 in the same class, and let S_{k} be the set of all k-subsets containing 1 and 2 . Then $\left(P_{k}, S_{k}\right)$ is a "rectangle" of zeros and

$$
\left|P_{k}\right| \cdot\left|S_{k}\right|=\binom{n-2}{k-2} S(n-1, k)
$$

Strategy 1 is better for large k and Strategy 2 for small k.

Some values

n	Total	$k=2$	3	4	5	6
3	2,2	1,1				
4	24,18	3,3	3,2			
5	330,326	9,7	28,28	6,6		
6	5382,5130	21,15	150,150	125,125	12,10	
7	98250,93782	45,31	760,620	1350,1350	390,390	20,15

The left hand values are the actual maximum size of a "rectangle" of zeros as computed using GAP and Minion.

The right hand values are the maximum of the values obtained from strategies 1 and 2 on the last slide.

Thanks!

Thanks!

The pictures in this talk were produced automagically using the Semigroups package for GAP:

围 J. D. Mitchell et al., Semigroups - GAP package, Version 2.4.1, May, 2015; http://tinyurl.com/semigroups.

The algorithm for computing maximal subsemigroups of arbitrary semigroups mentioned above is also implemented in Semigroups.

