Local monotonicities and lattice derivatives of Boolean and pseudo-Boolean functions

Tamás Waldhauser
joint work with Miguel Couceiro and Jean-Luc Marichal

University of Szeged

AAA 83
Novi Sad, 16 March 2012
Partial derivatives

- Boolean function: \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
Partial derivatives

- **Boolean function**: $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- **pseudo-Boolean function**: $f : \{0, 1\}^n \rightarrow \mathbb{R}$
Partial derivatives

- **Boolean function**: $f : \{0, 1\}^n \rightarrow \{0, 1\}$
- **pseudo-Boolean function**: $f : \{0, 1\}^n \rightarrow \mathbb{R}$
- The partial derivative of $f : \{0, 1\}^n \rightarrow \mathbb{R}$ w.r.t. x_k is the function $\Delta_k f : \{0, 1\}^n \rightarrow \mathbb{R}$ defined by

 $$\Delta_k f(x) = f(x^1_k) - f(x^0_k) = f(x_1, \ldots, 1, \ldots, x_n) - f(x_1, \ldots, 0, \ldots, x_n).$$

 Observe that $\Delta_k f$ does not depend on x_k.
Partial derivatives

- Boolean function: \(f : \{0, 1\}^n \rightarrow \{0, 1\} \)
- pseudo-Boolean function: \(f : \{0, 1\}^n \rightarrow \mathbb{R} \)
- The partial derivative of \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) w.r.t. \(x_k \) is the function \(\Delta_k f : \{0, 1\}^n \rightarrow \mathbb{R} \) defined by

\[
\Delta_k f(x) = f(x_k^1) - f(x_k^0) = f(x_1, \ldots, 1, \ldots, x_n) - f(x_1, \ldots, 0, \ldots, x_n).
\]

Observe that \(\Delta_k f \) does not depend on \(x_k \).

Example

The partial derivatives of the Boolean sum
\(f(x_1, x_2) = x_1 \oplus x_2 = x_1 + x_2 - 2x_1x_2 \) are

\[
\Delta_1 f(x_1, x_2) = f(1, x_2) - f(0, x_2) = 1 - 2x_2, \\
\Delta_2 f(x_1, x_2) = f(x_1, 1) - f(x_1, 0) = 1 - 2x_1.
\]
Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_k if

$$\Delta_k f(x) \geq 0 \text{ for all } x \in \{0, 1\}^n.$$
Monotonicity

- \(f \) is isotone (positive, order-preserving, nondecreasing) in \(x_k \) if
 \[
 \Delta_k f(x) \geq 0 \text{ for all } x \in \{0, 1\}^n.
 \]

- \(f \) is antitone (negative, order-reversing, nonincreasing) in \(x_k \) if
 \[
 \Delta_k f(x) \leq 0 \text{ for all } x \in \{0, 1\}^n.
 \]
f is isotone (positive, order-preserving, nondecreasing) in x_k if

$$\Delta_k f(x) \geq 0 \quad \text{for all } x \in \{0, 1\}^n.$$

f is antitone (negative, order-reversing, nonincreasing) in x_k if

$$\Delta_k f(x) \leq 0 \quad \text{for all } x \in \{0, 1\}^n.$$

f is monotone in x_k if it is either isotone or antitone in x_k, i.e., if $\Delta_k f(x)$ does not change sign.
Monotonicity

- f is **isotone** (positive, order-preserving, nondecreasing) in x_k if
 \[
 \Delta_k f(x) \geq 0 \text{ for all } x \in \{0, 1\}^n.
 \]

- f is **antitone** (negative, order-reversing, nonincreasing) in x_k if
 \[
 \Delta_k f(x) \leq 0 \text{ for all } x \in \{0, 1\}^n.
 \]

- f is **monotone** in x_k if it is either isotone or antitone in x_k, i.e., if $\Delta_k f(x)$ does not change sign.

- f is **monotone (isotone, antitone)** if it is monotone (isotone, antitone) in all of its variables.
Monotonicity

- **f** is **isotone** (positive, order-preserving, nondecreasing) in \(x_k \) if
 \[
 \Delta_k f(x) \geq 0 \quad \text{for all } x \in \{0, 1\}^n.
 \]

- **f** is **antitone** (negative, order-reversing, nonincreasing) in \(x_k \) if
 \[
 \Delta_k f(x) \leq 0 \quad \text{for all } x \in \{0, 1\}^n.
 \]

- **f** is **monotone** in \(x_k \) if it is either isotone or antitone in \(x_k \), i.e., if \(\Delta_k f(x) \) does not change sign.

- **f** is **monotone** (**isotone, antitone**) if
 it is monotone (**isotone, antitone**) in all of its variables.

- All unary functions are monotone.
Monotonicity

- **f** is isotone (positive, order-preserving, nondecreasing) in x_k if
 $$\Delta_k f(x) \geq 0 \text{ for all } x \in \{0, 1\}^n.$$

- **f** is antitone (negative, order-reversing, nonincreasing) in x_k if
 $$\Delta_k f(x) \leq 0 \text{ for all } x \in \{0, 1\}^n.$$

- **f** is monotone in x_k if it is either isotone or antitone in x_k, i.e., if $\Delta_k f(x)$ does not change sign.

- **f** is monotone (isotone, antitone) if it is monotone (isotone, antitone) in all of its variables.

- All unary functions are monotone.

- The only non-monotone binary Boolean functions are $x_1 \oplus x_2$ and $x_1 \oplus x_2 \oplus 1.$
We say that $f: \{0, 1\}^n \rightarrow \mathbb{R}$ is \textit{p}-locally monotone if, for every $k \in [n]$ and every $x, y \in \{0, 1\}^n$, we have

$$\sum_{i \in [n] \setminus \{k\}} |x_i - y_i| < p \quad \Rightarrow \quad \Delta_k f(x) \Delta_k f(y) \geq 0.$$
Local monotonicities

Definition

We say that $f : \{0, 1\}^n \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in [n]$ and every $x, y \in \{0, 1\}^n$, we have

$$\sum_{i \in [n] \setminus \{k\}} |x_i - y_i| < p \quad \Rightarrow \quad \Delta_k f(x) \Delta_k f(y) \geq 0.$$

p-local monotonicity implies $(p - 1)$-local monotonicity.
Local monotonicities

Definition

We say that $f : \{0, 1\}^n \to \mathbb{R}$ is p-locally monotone if, for every $k \in [n]$ and every $x, y \in \{0, 1\}^n$, we have

$$\sum_{i \in [n] \setminus \{k\}} |x_i - y_i| < p \implies \Delta_k f(x) \Delta_k f(y) \geq 0.$$

- p-local monotonicity implies $(p - 1)$-local monotonicity.
- An n-ary function is n-locally monotone iff it is monotone.
Local monotonicities

Definition

We say that \(f : \{0, 1\}^n \to \mathbb{R} \) is \(p \)-locally monotone if, for every \(k \in [n] \) and every \(x, y \in \{0, 1\}^n \), we have

\[
\sum_{i \in [n] \setminus \{k\}} |x_i - y_i| < p \quad \Rightarrow \quad \Delta_k f(x) \Delta_k f(y) \geq 0.
\]

- \(p \)-local monotonicity implies \((p - 1)\)-local monotonicity.
- An \(n \)-ary function is \(n \)-locally monotone iff it is monotone.
- Every function is \(1 \)-locally monotone.
Local monotonicities

Definition

We say that \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) is \(p \)-locally monotone if, for every \(k \in [n] \) and every \(x, y \in \{0, 1\}^n \), we have

\[
\sum_{i \in [n] \setminus \{k\}} |x_i - y_i| < p \quad \Rightarrow \quad \Delta_k f(x) \Delta_k f(y) \geq 0.
\]

- \(p \)-local monotonicity implies \((p - 1)\)-local monotonicity.
- An \(n \)-ary function is \(n \)-locally monotone iff it is monotone.
- Every function is 1-locally monotone.

Theorem

A Boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is 2-locally monotone iff

\[
|\Delta_k f(x) - \Delta_k f(y)| \leq \sum_{i \in [n] \setminus \{k\}} |x_i - y_i|.
\]
We define the \textbf{partial lattice derivatives} of $f : \{0, 1\}^n \to \mathbb{R}$ w.r.t. x_k by

\begin{align*}
\wedge_k f &: \{0, 1\}^n \to \mathbb{R}, \quad \wedge_k f(x) = f(x_0^k) \wedge f(x_1^k) = \min(f(x_0^k), f(x_1^k)), \\
\vee_k f &: \{0, 1\}^n \to \mathbb{R}, \quad \vee_k f(x) = f(x_0^k) \vee f(x_1^k) = \max(f(x_0^k), f(x_1^k)).
\end{align*}
Lattice derivatives

We define the partial lattice derivatives of \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) w.r.t. \(x_k \) by

\[
\wedge_k f : \{0, 1\}^n \rightarrow \mathbb{R}, \quad \wedge_k f(x) = f(x_0^k) \wedge f(x_1^k) = \min(f(x_0^k), f(x_1^k)),
\]

\[
\vee_k f : \{0, 1\}^n \rightarrow \mathbb{R}, \quad \vee_k f(x) = f(x_0^k) \vee f(x_1^k) = \max(f(x_0^k), f(x_1^k)).
\]

Example

The lattice derivatives of the Boolean sum \(f(x_1, x_2) = x_1 \oplus x_2 \) are

\[
\wedge_1 f(x_1, x_2) = f(1, x_2) \wedge f(0, x_2) = (1 \oplus x_2) \wedge x_2 = 0,
\]

\[
\vee_1 f(x_1, x_2) = f(1, x_2) \vee f(0, x_2) = (1 \oplus x_2) \vee x_2 = 1.
\]

The second-order lattice derivatives are

\[
\vee_2 \wedge_1 f(x_1, x_2) = \vee_2 0 = 0,
\]

\[
\wedge_1 \vee_2 f(x_1, x_2) = \wedge_1 1 = 1.
\]
A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is 2-locally monotone iff

$$\bigvee_k \bigwedge_j f = \bigwedge_j \bigvee_k f \text{ for all } j \neq k.$$
Theorem

A Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is 2-locally monotone iff

$$\bigvee_k \bigwedge_j f = \bigwedge_j \bigvee_k f \text{ for all } j \neq k.$$

Definition

We say that $f : \{0, 1\}^n \rightarrow \mathbb{R}$ has p-permutable lattice derivatives, if

$$O_{k_1} \cdots O_{k_p} f = O_{k_{\pi(1)}} \cdots O_{k_{\pi(p)}} f$$

holds for every p-element set $\{k_1, \ldots, k_p\} \subseteq \{1, \ldots, n\}$, for all operators $O_{k_i} \in \{\bigwedge_{k_i}, \bigvee_{k_i}\}$ and for every permutation $\pi \in S_p$.
Permutable lattice derivatives

Theorem

A Boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is 2-locally monotone iff

\[\bigvee_k \bigwedge_j f = \bigwedge_j \bigvee_k f \text{ for all } j \neq k. \]

Definition

We say that \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) has \(p \)-permutable lattice derivatives, if

\[O_{k_1} \cdots O_{k_p} f = O_{k_{\pi(1)}} \cdots O_{k_{\pi(p)}} f \]

holds for every \(p \)-element set \(\{k_1, \ldots, k_p\} \subseteq \{1, \ldots, n\} \), for all operators \(O_{k_i} \in \{\wedge_{k_i}, \vee_{k_i}\} \) and for every permutation \(\pi \in S_p \).

Theorem

If a function has \(p \)-permutable lattice derivatives, then it has \((p - 1) \)-permutable lattice derivatives.
Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.
Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.

Example

Let $f : \{0, 1\}^n \to \{0, 1\}$ be the function that takes the value 0 on all tuples of the form

$$(1, \ldots, 1, 0, \ldots, 0)$$

with $0 \leq m \leq n$,

and takes the value 1 everywhere else. Then f has n-permutable lattice derivatives, but it is only 2-locally monotone.
Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.

Example

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be the function that takes the value 0 on all tuples of the form

\[(1, \ldots, 1, 0, \ldots, 0) \text{ with } 0 \leq m \leq n,\]

and takes the value 1 everywhere else. Then f has n-permutable lattice derivatives, but it is only 2-locally monotone.

Theorem

For symmetric functions, p-local monotonicity is equivalent to p-permutability of lattice derivatives.
A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.

For example, if $f: \{0, 1\}^3 \to \mathbb{R}$, then $g: \{0, 1\}^2 \to \mathbb{R}$, $g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.
A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.

For example, if $f : \{0, 1\}^3 \to \mathbb{R}$, then $g : \{0, 1\}^2 \to \mathbb{R}, \ g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.
Sections

A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.

For example, if $f : \{0, 1\}^3 \to \mathbb{R}$, then $g : \{0, 1\}^2 \to \mathbb{R}$, $g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.

![Diagram](image)
Theorem

If a function is nice, then all of its sections are also nice, where “nice” stands for any of the previously discussed properties.
Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where “nice” stands for any of the previously discussed properties.
Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where “nice” stands for any of the previously discussed properties.

Corollary

A function is nice iff none of the minimal ugly functions appear among its sections.
Forbidden sections

Theorem

A Boolean function is isotone iff \(x_1 \oplus 1 \) does not appear among its sections.
Forbidden sections

Theorem

A Boolean function is isotone iff $x_1 \oplus 1$ does not appear among its sections.

Theorem

A Boolean function is 2-locally monotone iff neither $x_1 \oplus x_2$ nor $x_1 \oplus x_2 \oplus 1$ appears among its sections.
Forbidden sections

Theorem

A Boolean function is isotone iff $x_1 \oplus 1$ does not appear among its sections.

Theorem

A Boolean function is 2-locally monotone iff neither $x_1 \oplus x_2$ nor $x_1 \oplus x_2 \oplus 1$ appears among its sections.

Conjecture

A Boolean function has permutable lattice derivatives iff none of the following functions appear among its sections:

![Diagram of lattice structures]
Conference on Universal Algebra and Lattice Theory
Szeged, Hungary, June 21–25, 2012

http://www.math.u-szeged.hu/algebra2012

Dedicated to the 80th birthday of Béla Csákány