Local monotonicities and lattice derivatives of Boolean and pseudo-Boolean functions

Tamás Waldhauser
joint work with Miguel Couceiro and Jean-Luc Marichal

University of Szeged
AAA 83
Novi Sad, 16 March 2012

Partial derivatives

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Partial derivatives

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- pseudo-Boolean function: $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

Partial derivatives

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- pseudo-Boolean function: $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- The partial derivative of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ w.r.t. x_{k} is the function $\Delta_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\Delta_{k} f(\mathbf{x}) & =f\left(\mathbf{x}_{k}^{1}\right)-f\left(\mathbf{x}_{k}^{0}\right) \\
& =f\left(x_{1}, \ldots, 1, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)
\end{aligned}
$$

Observe that $\Delta_{k} f$ does not depend on x_{k}.

Partial derivatives

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- pseudo-Boolean function: $f:\{0,1\}^{n} \rightarrow \mathbb{R}$
- The partial derivative of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ w.r.t. x_{k} is the function $\Delta_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
\Delta_{k} f(\mathbf{x}) & =f\left(\mathbf{x}_{k}^{1}\right)-f\left(\mathbf{x}_{k}^{0}\right) \\
& =f\left(x_{1}, \ldots, 1, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, 0, \ldots, x_{n}\right)
\end{aligned}
$$

Observe that $\Delta_{k} f$ does not depend on x_{k}.

Example

The partial derivatives of the Boolean sum
$f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}=x_{1}+x_{2}-2 x_{1} x_{2}$ are

$$
\begin{aligned}
& \Delta_{1} f\left(x_{1}, x_{2}\right)=f\left(1, x_{2}\right)-f\left(0, x_{2}\right)=1-2 x_{2} \\
& \Delta_{2} f\left(x_{1}, x_{2}\right)=f\left(x_{1}, 1\right)-f\left(x_{1}, 0\right)=1-2 x_{1}
\end{aligned}
$$

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is antitone (negative, order-reversing, nonincreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is antitone (negative, order-reversing, nonincreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is monotone in x_{k} if it is either isotone or antitone in x_{k}, i.e., if $\Delta_{k} f(\mathbf{x})$ does not change sign.

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is antitone (negative, order-reversing, nonincreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is monotone in x_{k} if it is either isotone or antitone in x_{k}, i.e., if $\Delta_{k} f(\mathbf{x})$ does not change sign.
- f is monotone (isotone, antitione) if it is monotone (isotone, antitone) in all of its variables.

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is antitone (negative, order-reversing, nonincreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is monotone in x_{k} if it is either isotone or antitone in x_{k}, i.e., if $\Delta_{k} f(\mathbf{x})$ does not change sign.
- f is monotone (isotone, antitione) if it is monotone (isotone, antitone) in all of its variables.
- All unary functions are monotone.

Monotonicity

- f is isotone (positive, order-preserving, nondecreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is antitone (negative, order-reversing, nonincreasing) in x_{k} if

$$
\Delta_{k} f(\mathbf{x}) \leq 0 \text { for all } \mathbf{x} \in\{0,1\}^{n}
$$

- f is monotone in x_{k} if it is either isotone or antitone in x_{k}, i.e., if $\Delta_{k} f(\mathbf{x})$ does not change sign.
- f is monotone (isotone, antitione) if it is monotone (isotone, antitone) in all of its variables.
- All unary functions are monotone.
- The only non-monotone binary Boolean functions are $x_{1} \oplus x_{2}$ and $x_{1} \oplus x_{2} \oplus 1$.

Local monotonicities

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in[n]$ and every $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$, we have

$$
\sum_{i \in[n] \backslash\{k\}}\left|x_{i}-y_{i}\right|<p \quad \Rightarrow \quad \Delta_{k} f(\mathbf{x}) \Delta_{k} f(\mathbf{y}) \geq 0
$$

Local monotonicities

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in[n]$ and every $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$, we have

$$
\sum_{i \in[n] \backslash\{k\}}\left|x_{i}-y_{i}\right|<p \quad \Rightarrow \quad \Delta_{k} f(\mathbf{x}) \Delta_{k} f(\mathbf{y}) \geq 0 .
$$

- p-local monotonicity implies $(p-1)$-local monotonicity.

Local monotonicities

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in[n]$ and every $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$, we have

$$
\sum_{i \in[n \backslash\{k\}}\left|x_{i}-y_{i}\right|<p \quad \Rightarrow \quad \Delta_{k} f(\mathbf{x}) \Delta_{k} f(\mathbf{y}) \geq 0 .
$$

- p-local monotonicity implies $(p-1)$-local monotonicity.
- An n-ary function is n-locally monotone iff it is monotone.

Local monotonicities

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in[n]$ and every $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$, we have

$$
\sum_{i \in[n \backslash\{k\}}\left|x_{i}-y_{i}\right|<p \quad \Rightarrow \quad \Delta_{k} f(\mathbf{x}) \Delta_{k} f(\mathbf{y}) \geq 0 .
$$

- p-local monotonicity implies $(p-1)$-local monotonicity.
- An n-ary function is n-locally monotone iff it is monotone.
- Every function is 1-locally monotone.

Local monotonicities

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is p-locally monotone if, for every $k \in[n]$ and every $\mathbf{x}, \mathbf{y} \in\{0,1\}^{n}$, we have

$$
\sum_{i \in[n] \backslash\{k\}}\left|x_{i}-y_{i}\right|<p \quad \Rightarrow \quad \Delta_{k} f(\mathbf{x}) \Delta_{k} f(\mathbf{y}) \geq 0
$$

- p-local monotonicity implies $(p-1)$-local monotonicity.
- An n-ary function is n-locally monotone iff it is monotone.
- Every function is 1-locally monotone.

Theorem

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is 2-locally monotone iff

$$
\left|\Delta_{k} f(\mathbf{x})-\Delta_{k} f(\mathbf{y})\right| \leq \sum_{i \in[n] \backslash\{k\}}\left|x_{i}-y_{i}\right|
$$

Lattice derivatives

We define the partial lattice derivatives of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ w.r.t. x_{k} by

$$
\begin{aligned}
& \wedge_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}, \wedge_{k} f(\mathbf{x})=f\left(\mathbf{x}_{k}^{0}\right) \wedge f\left(\mathbf{x}_{k}^{1}\right)=\min \left(f\left(\mathbf{x}_{k}^{0}\right), f\left(\mathbf{x}_{k}^{1}\right)\right), \\
& \vee_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}, \vee_{k} f(\mathbf{x})=f\left(\mathbf{x}_{k}^{0}\right) \vee f\left(\mathbf{x}_{k}^{1}\right)=\max \left(f\left(\mathbf{x}_{k}^{0}\right), f\left(\mathbf{x}_{k}^{1}\right)\right)
\end{aligned}
$$

Lattice derivatives

We define the partial lattice derivatives of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ w.r.t. x_{k} by

$$
\begin{aligned}
& \wedge_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}, \wedge_{k} f(\mathbf{x})=f\left(\mathbf{x}_{k}^{0}\right) \wedge f\left(\mathbf{x}_{k}^{1}\right)=\min \left(f\left(\mathbf{x}_{k}^{0}\right), f\left(\mathbf{x}_{k}^{1}\right)\right) \\
& \vee_{k} f:\{0,1\}^{n} \rightarrow \mathbb{R}, \vee_{k} f(\mathbf{x})=f\left(\mathbf{x}_{k}^{0}\right) \vee f\left(\mathbf{x}_{k}^{1}\right)=\max \left(f\left(\mathbf{x}_{k}^{0}\right), f\left(\mathbf{x}_{k}^{1}\right)\right)
\end{aligned}
$$

Example

The lattice derivatives of the Boolean sum $f\left(x_{1}, x_{2}\right)=x_{1} \oplus x_{2}$ are

$$
\begin{aligned}
& \wedge_{1} f\left(x_{1}, x_{2}\right)=f\left(1, x_{2}\right) \wedge f\left(0, x_{2}\right)=\left(1 \oplus x_{2}\right) \wedge x_{2}=0, \\
& \vee_{1} f\left(x_{1}, x_{2}\right)=f\left(1, x_{2}\right) \vee f\left(0, x_{2}\right)=\left(1 \oplus x_{2}\right) \vee x_{2}=1
\end{aligned}
$$

The second-order lattice derivatives are

$$
\begin{aligned}
& \vee_{2} \wedge_{1} f\left(x_{1}, x_{2}\right)=\vee_{2} 0=0, \\
& \wedge_{1} \vee_{2} f\left(x_{1}, x_{2}\right)=\wedge_{1} 1=1 .
\end{aligned}
$$

Permutable lattice derivatives

Theorem

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is 2-locally monotone iff

$$
\vee_{k} \wedge_{j} f=\wedge_{j} \vee_{k} f \text { for all } j \neq k
$$

Permutable lattice derivatives

Theorem

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is 2-locally monotone iff

$$
\vee_{k} \wedge_{j} f=\wedge_{j} \vee_{k} f \text { for all } j \neq k
$$

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ has p-permutable lattice derivatives, if

$$
O_{k_{1}} \cdots O_{k_{p}} f=O_{k_{\pi(1)}} \cdots O_{k_{\pi(p)}} f
$$

holds for every p-element set $\left\{k_{1}, \ldots, k_{p}\right\} \subseteq\{1, \ldots, n\}$, for all operators $O_{k_{i}} \in\left\{\wedge_{k_{i}}, \vee_{k_{i}}\right\}$ and for every permutation $\pi \in S_{p}$.

Permutable lattice derivatives

Theorem

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is 2-locally monotone iff

$$
\vee_{k} \wedge_{j} f=\wedge_{j} \vee_{k} f \text { for all } j \neq k
$$

Definition

We say that $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ has p-permutable lattice derivatives, if

$$
O_{k_{1}} \cdots O_{k_{p}} f=O_{k_{\pi(1)}} \cdots O_{k_{\pi(p)}} f
$$

holds for every p-element set $\left\{k_{1}, \ldots, k_{p}\right\} \subseteq\{1, \ldots, n\}$, for all operators $O_{k_{i}} \in\left\{\wedge_{k_{i}}, \vee_{k_{i}}\right\}$ and for every permutation $\pi \in S_{p}$.

Theorem

If a function has p-permutable lattice derivatives, then it has ($p-1$)-permutable lattice derivatives.

Local monotonicities vs. permutable lattice derivatives

```
Theorem
If a function is p-locally monotone, then it has p-permutable lattice
derivatives.
```


Local monotonicities vs. permutable lattice derivatives

Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.

Example

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be the function that takes the value 0 on all tuples of the form

$$
(\overbrace{1, \ldots, 1}^{m}, 0, \ldots, 0) \text { with } 0 \leq m \leq n,
$$

and takes the value 1 everywhere else. Then f has n-permutable lattice derivatives, but it is only 2-locally monotone.

Local monotonicities vs. permutable lattice derivatives

Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.

Example

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be the function that takes the value 0 on all tuples of the form

$$
(\overbrace{1, \ldots, 1}^{m}, 0, \ldots, 0) \text { with } 0 \leq m \leq n,
$$

and takes the value 1 everywhere else. Then f has n-permutable lattice derivatives, but it is only 2-locally monotone.

Theorem

For symmetric functions, p-local monotonicity is equivalent to p-permutability of lattice derivatives.

Sections

A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.
For example, if $f:\{0,1\}^{3} \rightarrow \mathbb{R}$, then
$g:\{0,1\}^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right):=f\left(x_{1}, x_{2}, 0\right)$ is a section of f.

Sections

A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.
For example, if $f:\{0,1\}^{3} \rightarrow \mathbb{R}$, then
$g:\{0,1\}^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right):=f\left(x_{1}, x_{2}, 0\right)$ is a section of f.

Sections

A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.
For example, if $f:\{0,1\}^{3} \rightarrow \mathbb{R}$, then
$g:\{0,1\}^{2} \rightarrow \mathbb{R}, g\left(x_{1}, x_{2}\right):=f\left(x_{1}, x_{2}, 0\right)$ is a section of f.

Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where "nice" stands for any of the previously discussed properties.

Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where "nice" stands for any of the previously discussed properties.

Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where "nice" stands for any of the previously discussed properties.

Corollary

A function is nice iff none of the minimal ugly functions appear among its sections.

Forbidden sections

Theorem
A Boolean function is isotone iff $x_{1} \oplus 1$ does not appear among its sections.

Forbidden sections

TheoremA Boolean function is isotone iff $x_{1} \oplus 1$ does not appear among itssections.
TheoremA Boolean function is 2-locally monotone iff neither $x_{1} \oplus x_{2}$ nor$x_{1} \oplus x_{2} \oplus 1$ appears among its sections.

Forbidden sections

Theorem

A Boolean function is isotone iff $x_{1} \oplus 1$ does not appear among its sections.

Theorem

A Boolean function is 2-locally monotone iff neither $x_{1} \oplus x_{2}$ nor $x_{1} \oplus x_{2} \oplus 1$ appears among its sections.

Conjecture

A Boolean function has permutable lattice derivatives iff none of the following functions appear among its sections:

References

固 M. Couceiro, J.-L. Marichal, T. Waldhauser, Locally monotone Boolean and pseudo-Boolean functions, to appear in Discrete Applied Mathematics, arXiv:1107.1161.

Advertisement

Conference on Universal Algebra and Lattice Theory Szeged, Hungary, June 21-25, 2012
http://www.math.u-szeged.hu/algebra2012

Dedicated to the 80th birthday of Béla Csákány

