A relational localisation theory for topological algebras

Friedrich Martin Schneider

Technische Universität Dresden

Novi Sad, March 17, 2012
What will this talk be about?

I will sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures. I will introduce a relational localisation theory for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition. I will explore the developed concepts for modules of compact rings.
What will this talk be about?

I will ...

(sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

introduce a relational localisation theory for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition.

explore the developed concepts for modules of compact rings.)
What will this talk be about?

I will ...

- sketch a general **Galois theory** for continuous operations and closed relations on a topological space
What will this talk be about?

I will ...

▶ sketch a general **Galois theory** for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
What will this talk be about?

I will ...

▶ sketch a general **Galois theory** for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

▶ introduce a relational **localisation theory** for topological algebras,
What will this talk be about?

I will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

- introduce a relational localisation theory for topological algebras, identify suitable subsets,
What will this talk be about?

I will ...

▶ sketch a general **Galois theory** for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

▶ introduce a relational **localisation theory** for topological algebras, identify suitable subsets, describe the restriction process
What will this talk be about?

I will ...

▶ sketch a general **Galois theory** for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

▶ introduce a relational **localisation theory** for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition.
What will this talk be about?

I will ...

► sketch a general **Galois theory** for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

► introduce a relational **localisation theory** for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition.

► explore the developed concepts for **modules of compact rings**.
The Galois connection $c\text{Pol}-c\text{Inv}$

Let $X = (A, T)$ be a topological space, $m, n \in \mathbb{N}$.
The Galois connection \(\text{cPol}-\text{cInv} \)

Let \(X = (A, T) \) be a topological space, \(m, n \in \mathbb{N} \).

\[
O_A^{(n)} := A^A^n, \quad R_A^{(m)} := \mathcal{P}(A^m), \\
O_A := \bigcup_{n \in \mathbb{N}} O_A^{(n)}, \quad R_A := \bigcup_{m \in \mathbb{N}} R_A^{(m)}, \\
cO_{X}^{(n)} := C(X^n; X), \quad cR_{X}^{(m)} := \{ \varrho \subseteq A^m \mid \varrho \text{ closed in } X^m \}, \\
cO_X := \bigcup_{n \in \mathbb{N}} cO_{X}^{(n)}, \quad cR_X := \bigcup_{m \in \mathbb{N}} cR_{X}^{(m)}.
\]
The Galois connection cPol-clInv

Let $X = (A, T)$ be a topological space, $m, n \in \mathbb{N}$.

- $O_A^{(n)} := A^n$,
- $R_A^{(m)} := \mathcal{P}(A^m)$,
- $O_A := \bigcup_{n \in \mathbb{N}} O_A^{(n)}$,
- $R_A := \bigcup_{m \in \mathbb{N}} R_A^{(m)}$,
- $cO_X^{(n)} := C(X^n; X)$,
- $cR_X^{(m)} := \{ \varrho \subseteq A^m \mid \varrho \text{ closed in } X^m \}$,
- $cO_X := \bigcup_{n \in \mathbb{N}} cO_X^{(n)}$,
- $cR_X := \bigcup_{m \in \mathbb{N}} cR_X^{(m)}$.

For $f \in O_A^{(n)}$ and $\varrho \in R_A^{(m)}$,
The Galois connection cPol-clnv

Let $X = (A, T)$ be a topological space, $m, n \in \mathbb{N}$.

$$O_A^{(n)} := A^A^n,$$
$$O_A := \bigcup_{n \in \mathbb{N}} O_A^{(n)},$$
$$cO_X^{(n)} := C(X^n; X),$$
$$cO_X := \bigcup_{n \in \mathbb{N}} cO_X^{(n)},$$
$$R_A^{(m)} := \mathcal{P}(A^m),$$
$$R_A := \bigcup_{m \in \mathbb{N}} R_A^{(m)},$$
$$cR_X^{(m)} := \{ \varrho \subseteq A^m \mid \varrho \text{ closed in } X^m \},$$
$$cR_X := \bigcup_{m \in \mathbb{N}} cR_X^{(m)}.$$

For $f \in O_A^{(n)}$ and $\varrho \in R_A^{(m)}$,

$$f \triangleright \varrho \iff \forall r_0, \ldots, r_{n-1} \in \varrho : f \circ \langle r_0, \ldots, r_{n-1} \rangle \in \varrho$$
$$\iff \varrho \in \text{Sub}(\langle A; f \rangle^m)$$
$$\iff f \in \text{Hom}(\langle A; \varrho \rangle^n; \langle A; \varrho \rangle).$$
The Galois connection $cPol$-$cInv$ (cont’d.)

For $F \subseteq cO_X$, $cInv \langle A, T, F \rangle := cInv_X F := \{ \varrho \in cR_X \mid \forall f \in F: f \varrho \}$.

for $Q \subseteq cR_X$, $cPol \langle A, T, Q \rangle := cPol_X Q := \{ f \in cO_X \mid \forall \varrho \in Q: f \varrho \}$.

How can we describe the closure system induced by this Galois connection?
The Galois connection \(cPol-cInv \) (cont’d.)

For \(F \subseteq cO_X \),
The Galois connection $cPol$-$cInv$ (cont’d.)

For $F \subseteq cO_X$,

\[\text{cInv}(A, T, F) := \text{cInv}_X F := \{ \varrho \in cR_X \mid \forall f \in F : f \triangleright \varrho \} , \]

How can we describe the closure system induced by this Galois connection?
The Galois connection \(cPol-cInv \) (cont’d.)

For \(F \subseteq cO_X \),

\[
\text{cInv}\langle A, T, F \rangle := \text{cInv}_X F := \{ \varrho \in cR_X \mid \forall f \in F : f \triangleright \varrho \},
\]

for \(Q \subseteq cR_X \),

\[
\text{cPol}\langle A, T, Q \rangle := \text{cPol}_X Q := \{ f \in cO_X \mid \forall \varrho \in Q : f \triangleright \varrho \}.
\]
The Galois connection \(cPol - cInv \) (cont’d.)

For \(F \subseteq cO_X \),

\[
cInv\langle A, T, F \rangle := cInv_X F := \{ \varrho \in cR_X \mid \forall f \in F : f \triangleright \varrho \},
\]

for \(Q \subseteq cR_X \),

\[
cPol\langle A, T, Q \rangle := cPol_X Q := \{ f \in cO_X \mid \forall \varrho \in Q : f \triangleright \varrho \}.
\]
The Galois connection \(c\text{Pol} - c\text{Inv} \) (cont’d.)

For \(F \subseteq cO_X \),

\[
c\text{Inv}\langle A, T, F \rangle := c\text{Inv}_X F := \{ \varrho \in cR_X | \forall f \in F : f \triangleright \varrho \},
\]

for \(Q \subseteq cR_X \),

\[
c\text{Pol}\langle A, T, Q \rangle := c\text{Pol}_X Q := \{ f \in cO_X | \forall \varrho \in Q : f \triangleright \varrho \}.
\]

How can we describe the closure system induced by this Galois connection?
Clones of operations

A set $F \subseteq O_A$ is called clone of operations on A if

1. F contains all projections,
2. for $m, n \in \mathbb{N}$, $f \in F(n)$, $f_0, \ldots, f_{n-1} \in F(m)$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by $\text{Clo}(F)$.

Obviously, cO_X is a clone of operations on A.
Clones of operations

Reminder
A set $F \subseteq O_A$ is called clone of operations on A if

(1) F contains all projections,

(2) for $m, n \in \mathbb{N}$, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by $\text{Clo}(F)$.

Obviously, cO_X is a clone of operations on A.

Friedrich Martin Schneider
Technische Universität Dresden

A relational localisation theory for topological algebras
Clones of operations

Reminder
A set $F \subseteq O_A$ is called clone of operations on A if

1. F contains all projections,

2. for $m, n \in \mathbb{N}$, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by Clo(F).
Clones of operations

Reminder
A set $F \subseteq O_A$ is called clone of operations on A if

1. F contains all projections,
2. for $m, n \in \mathbb{N}$, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by $\text{Clo}(F)$.

Obviously, cO_X is a clone of operations on A.
Clones of closed relations

A set $Q \subseteq cR^X$ is called clone of closed relations on X if Q is closed w.r.t. general superposition of closed relations, that is:

Whenever I is a set, $Y = (B, S)$ a topological space, $m, m_i \in \mathbb{N}$, $\phi: m \rightarrow B$, $\phi_i: m_i \rightarrow B$ and $\varrho_i \in Q(m_i)$ for $i \in I$, then

$\bigwedge_{i \in I} \phi, Y, X(\phi_i) \in Q$,

where $\bigwedge_{i \in I} \phi, Y, X(\phi_i) := \{ r \circ \phi | r \in C(Y; X), \forall i \in I: r \circ \phi_i \in \varrho_i \}$.

For any set $Q \subseteq cR^X$, the smallest clone of closed relations on X containing Q is denoted by $\text{CLO}(Q)$.
Clones of closed relations

Definition
A set \(Q \subseteq cR_X \) is called clone of closed relations on \(X \) if \(Q \) is closed w.r.t. general superposition of closed relations.
Clones of closed relations

Definition
A set $Q \subseteq cR_\mathcal{X}$ is called clone of closed relations on \mathcal{X} if Q is closed w.r.t. general superposition of closed relations, that is:
Whenever I is a set, $\mathcal{Y} = (B, S)$ a topological space, $m, m_i \in \mathbb{N}$, $\varphi : m \to B$, $\varphi_i : m_i \to B$ and $\varrho_i \in Q^{(m_i)}$ for $i \in I$, then

\[
\bigwedge_{(\varphi_i)_{i \in I}} (\varrho_i)_{i \in I} \in Q,
\]

where

\[
\bigwedge_{(\varphi_i)_{i \in I}} (\varrho_i)_{i \in I} := \{ r \circ \varphi | r \in C(\mathcal{Y}; \mathcal{X}), \forall i \in I : r \circ \varphi_i \in \varrho_i \}.
\]
Clones of closed relations

Definition
A set $Q \subseteq cR_X$ is called clone of closed relations on X if Q is closed w.r.t. general superposition of closed relations, that is:
Whenever I is a set, $Y = (B, S)$ a topological space, $m, m_i \in \mathbb{N}$, $\varphi : m \to B$, $\varphi_i : m_i \to B$ and $\varrho_i \in Q^{(m_i)}$ for $i \in I$, then

$$\bigwedge_{(\varphi_i)_{i \in I}}^{(\varrho_i)_{i \in I}} X^m \in Q,$$

where

$$\bigwedge_{(\varphi_i)_{i \in I}}^{(\varrho_i)_{i \in I}} := \{ r \circ \varphi \mid r \in C(Y; X), \forall i \in I : r \circ \varphi_i \in \varrho_i \}.$$

For any set $Q \subseteq cR_X$, the smallest clone of closed relations on X containing Q is denoted by $\text{CLO}(Q)$.
Local closure operators

Definition

For $F \subseteq cO_{\mathcal{X}}$, $Q \subseteq cR_{\mathcal{X}}$ and $s \in \mathbb{N}$:

s-Loc$_F := \{ f \in cO_{\mathcal{N}(n)} \ | \ n \in \mathbb{N}, \forall a \in (A^n)_s, U \in T_s : [f(a_0) \in U_0, \ldots, f(a_{s-1}) \in U_{s-1}] \Rightarrow \exists g \in F : g(a_0) \in U_0, \ldots, g(a_{s-1}) \in U_{s-1} \}$,

s-Loc$_Q := \{ \varrho \in cO_{\mathcal{X}} | \forall \sigma \subseteq \varrho, |\sigma| \leq s : \exists \varrho' \in Q : \sigma \subseteq \varrho' \subseteq \varrho \}$,

Loc$_F := \bigcap_{s \in \mathbb{N}} s$-Loc$_F$, LOC$_Q := \bigcap_{s \in \mathbb{N}} s$-Loc$_Q$.
Local closure operators

Definition
For $F \subseteq cO_X$, $Q \subseteq cR_X$ and $s \in \mathbb{N}$:

$$s\text{-Loc} F := \{ f \in cO_X(n) \mid n \in \mathbb{N}, \forall a \in \{ A_n \}^s, U \in T^s : f(a_0) \in U_0, \ldots, f(a_{s-1}) \in U_{s-1} \}$$

$$s\text{-LOC} Q := \{ \varrho \in cO_X \mid \forall \sigma \subseteq \varrho, |\varrho| \leq s : \exists \varrho' \in Q : \sigma \subseteq \varrho' \subseteq \varrho \}$$

$$\text{Loc} F := \bigcap_{s \in \mathbb{N}} s\text{-Loc} F$$

$$\text{LOC} Q := \bigcap_{s \in \mathbb{N}} s\text{-LOC} Q$$
Local closure operators

Definition

For $F \subseteq cO_X$, $Q \subseteq cR_X$ and $s \in \mathbb{N}$:

$$
\begin{align*}
\text{s-Loc } F & := \{ f \in cO_X^n \mid n \in \mathbb{N}, \forall a \in (A^n)^s, U \in T^s : \\
& \quad [f(a_0) \in U_0, \ldots, f(a_{s-1}) \in U_{s-1}] \Rightarrow \\
& \quad [\exists g \in F : g(a_0) \in U_0, \ldots, g(a_{s-1}) \in U_{s-1}] \}, \\
\text{s-LOC } Q & := \{ \varrho \in cO_X \mid \forall \sigma \subseteq \varrho, |\sigma| \leq s : \exists \varrho' \in Q : \sigma \subseteq \varrho' \subseteq \varrho \}, \\
\text{Loc } F & := \bigcap_{s \in \mathbb{N}} \text{s-Loc } F, \\
\text{LOC } Q & := \bigcap_{s \in \mathbb{N}} \text{s-LOC } Q.
\end{align*}
$$
Characterising the Galois closures

Theorem
Let $F \subseteq \mathbb{cO}_X$. Then:
(a) s-Loc Clo(F) = $cPol$ $cInv$ (s)F for $s \in \mathbb{N}$.
(b) Loc Clo(F) = $cPol$ $cInv$ F.

Theorem
Let $Q \subseteq \mathbb{cR}_X$. Then:
(a) s-LOC Clo(Q) = $cInv$ $cPol$ (s)Q for $s \in \mathbb{N}$.
(b) LOC Clo(Q) = $cInv$ $cPol$ Q.
Characterising the Galois closures

Theorem

Let $F \subseteq cO_X$. Then:

(a) s-Loc Clo(F) = $cPol$ cInv(s) F for $s \in \mathbb{N}$.

(b) Loc Clo(F) = $cPol$ cInv(F).

Theorem

Let $Q \subseteq cR_X$. Then:

(a) s-LOC CLO(Q) = $cInv$ cPol(s) Q for $s \in \mathbb{N}$.

(b) LOC CLO(Q) = $cInv$ cPol(Q).
Characterising the Galois closures

Theorem

Let $F \subseteq cO_X$. Then:

(a) $s\text{-Loc } \text{Clo}(F) = cPol cInv^{(s)} F$ for $s \in \mathbb{N}$.

(b) $\text{Loc } \text{Clo}(F) = cInv cPol F$.

Friedrich Martin Schneider
Technische Universität Dresden

A relational localisation theory for topological algebras
Characterising the Galois closures

Theorem

Let $F \subseteq cO_X$. Then:

(a) s-Loc $\text{Clo}(F) = cPol c\text{Inv}^{(s)} F$ for $s \in \mathbb{N}$.

(b) Loc $\text{Clo}(F) = cPol c\text{Inv} F$.
Characterising the Galois closures

Theorem

Let \(F \subseteq cO_X \). Then:

(a) \(s\text{-Loc } \operatorname{Clo}(F) = c\text{Pol } c\operatorname{Inv}^{(s)} F \) for \(s \in \mathbb{N} \).

(b) \(\text{Loc } \operatorname{Clo}(F) = c\text{Pol } c\operatorname{Inv} F \).

Theorem

Let \(Q \subseteq cR_X \). Then:
Characterising the Galois closures

Theorem

Let $F \subseteq cO_X$. Then:

(a) s-Loc Clo(F) = cPol cInvs(F) for $s \in \mathbb{N}$.

(b) Loc Clo(F) = cPol cInv F.

Theorem

Let $Q \subseteq cR_X$. Then:

(a) s-LOC CLO(Q) = cInv cPols(Q) for $s \in \mathbb{N}$.
Characterising the Galois closures

Theorem
Let \(F \subseteq cO_X \). Then:
(a) \(s\text{-}\text{Loc} \text{ Clo}(F) = cPol \text{ clInv}^{(s)} F \) for \(s \in \mathbb{N} \).
(b) \(\text{Loc} \text{ Clo}(F) = cPol \text{ clInv} F \).

Theorem
Let \(Q \subseteq cR_X \). Then:
(a) \(s\text{-}\text{LOC }\text{CLO}(Q) = \text{clInv }\text{cPol}^{(s)} Q \) for \(s \in \mathbb{N} \).
(b) \(\text{LOC }\text{CLO}(Q) = \text{clInv }\text{cPol} Q \).
A localisation theory consists of three main ingredients.

1. Localisation: Restricting the structure to suitable subsets.
2. Classification: Calculating locally.
3. Globalisation: Combining local results into global results.

What are the suitable subsets for this kind of localisation theory?
A localisation theory consists of three main ingredients.

1. **Localisation**: Restricting the structure to suitable subsets.
2. **Classification**: Calculating locally.
3. **Globalisation**: Combining local results into global results.
A localisation theory consists of three main ingredients.

(1) **Localisation**: Restricting the structure to suitable subsets.
A localisation theory consists of three main ingredients.

1. **Localisation**: Restricting the structure to suitable subsets.
2. **Classification**: Calculating locally.
A localisation theory consists of three main ingredients.

1. **Localisation**: Restricting the structure to suitable subsets.
2. **Classification**: Calculating locally.
3. **Globalisation**: Combining local results into global results.
Topologising RST

A localisation theory consists of three main ingredients.

1. **Localisation**: Restricting the structure to suitable subsets.
2. **Classification**: Calculating locally.
3. **Globalisation**: Combining local results into global results.

What are the suitable subsets for this kind of localisation theory?
Finding suitable subsets

Let $A = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$, \(E_A(U) := \{ e \mid e \in \text{Loc Clo}(1)(F), \text{im} e \subseteq U \} \).

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \upharpoonright U : \text{cInv} A \to \text{cR}(U, T_U)$, $\varrho \mapsto \varrho \upharpoonright U$ is a homomorphism between clones of closed relations.

(b) $\text{id}_U \in \text{Loc} \{ e \mid U \subseteq e \mid e \in E_A(U) \}$.

Additionally, if (a) holds, then $[Q] \upharpoonright U := \{ \varrho \upharpoonright U \mid \varrho \in Q \}$ is locally closed for every locally closed clone of closed relations $Q \subseteq \text{cInv} A$.
Finding suitable subsets

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathbf{A}}(U) := \left\{ e \middle| e \in \text{Loc Clo}^{(1)}(F), \text{im } e \subseteq U \right\}.$$
Finding suitable subsets

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_\mathbf{A}(U) := \left\{ e \mid e \in \text{Loc Clo}^{(1)}(F), \text{im } e \subseteq U \right\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

1. $\cdot \upharpoonright U : c\text{Inv} \mathbf{A} \rightarrow c\text{R}(U, T_U)$, $\varrho \mapsto \varrho \upharpoonright U$ is a homomorphism between clones of closed relations.
2. $\text{id}_U \in \text{Loc} \{ e \mid U \subseteq U e \mid e \in E_\mathbf{A}(U) \}$.

Additionally, if (a) holds, then $[Q] \upharpoonright U := \{ \varrho \upharpoonright U \mid \varrho \in Q \}$ is locally closed for every locally closed clone of closed relations $Q \subseteq c\text{Inv} \mathbf{A}$.
Finding suitable subsets

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_A(U) := \left\{ e \mid e \in \text{Loc Clo}^{(1)}(F), \text{im } e \subseteq U \right\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \mid_U : \text{clInv } \mathbf{A} \rightarrow \text{cR}_{(U, T_U)}, \rho \mapsto \rho \mid_U := \rho \cap U^{\text{ar } \rho}$ is a homomorphism between clones of closed relations.

Additionally, if (a) holds, then $[Q] \mid_U := \left\{ \rho \mid_U \mid \rho \in Q \right\}$ is locally closed for every locally closed clone of closed relations $Q \subseteq \text{cInv } \mathbf{A}$.
Finding suitable subsets

Let $A = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_A(U) := \left\{ e \mid e \in \text{Loc Clo}^{(1)}(F), \text{im } e \subseteq U \right\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \upharpoonright U : \text{cl} \text{nv } A \rightarrow \text{cR}(U, T_U), \varrho \mapsto \varrho \upharpoonright U := \varrho \cap U^\text{ar} \varrho$ is a homomorphism between clones of closed relations.

(b) $\text{id}_U \in \text{Loc} \left\{ e \upharpoonright U \mid e \in E_A(U) \right\}$.

Friedrich Martin Schneider

Technische Universität Dresden

A relational localisation theory for topological algebras
Finding suitable subsets

Let $A = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_A(U) := \left\{ e \mid e \in \text{Loc Clo}^{(1)}(F), \text{im } e \subseteq U \right\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \upharpoonright U : \text{clnv } A \to \text{cR}_U, \varrho \mapsto \varrho \upharpoonright U := \varrho \cap U^{\text{ar } \varrho}$ is a homomorphism between clones of closed relations.

(b) $\text{id}_U \in \text{Loc } \left\{ e \upharpoonright_U \mid e \in E_A(U) \right\}$.

Additionally, if (a) holds, then

$$[Q] \upharpoonright_U := \{ \varrho \upharpoonright_U \mid \varrho \in Q \}$$

is locally closed

for every locally closed clone of closed relations $Q \subseteq \text{clnv } A$.
Restricting algebras to neighbourhoods

\[A \not\equiv A = \langle A, T, cInv A \rangle \]
\[cInv \langle A, T, Loc \ Clo (A) \rangle \]
\[cPol \equiv \top \ cInv \]
\[\overset{\equiv_{\text{top}}}{A} \rightarrow cInv \]
\[\langle A, T, Loc \ Clo (A) \rangle \]
\[\overset{cPol}{\leftarrow} \]
\[\langle U, T_U, cPol [cInv A] \mid U \rangle \]
\[A \mid U := \langle U, T_U, [cInv A] \mid U \rangle \]

Definition (neighbourhood)

\[U \in Neigh A \iff \text{id}_U \in \text{Loc} \left\{ e \mid \mid e \mid \subseteq U \right\} \]

Friedrich Martin Schneider

Technische Universität Dresden

A relational localisation theory for topological algebras
How many neighbourhoods are “enough”?

Definition

Let $U \subseteq \text{Neigh}_A$.

1. U is called a cover of A if $\forall U \in U: \varrho \upharpoonleft U = \sigma \upharpoonleft U \implies \varrho = \sigma$ for all $\varrho, \sigma \in c\text{Inv}_A$.

2. U is called a c-cover of A if it is a cover of A and every $U \in U$ is closed w.r.t. T.

Moreover, let $E_A(U) := \bigcup \{ E_A(U) \mid U \in U \}$.

Friedrich Martin Schneider
Technische Universität Dresden
A relational localisation theory for topological algebras
How many neighbourhoods are "enough"?

Definition

Let $\mathcal{U} \subseteq \text{Neigh } \mathbf{A}$.

1. \mathcal{U} is called **cover of \mathbf{A}** if

 $$[\forall U \in \mathcal{U} : \varrho|_U = \sigma|_U] \Rightarrow \varrho = \sigma$$

 for all $\varrho, \sigma \in \text{clnv } \mathbf{A}$.
How many neighbourhoods are “enough”?

Definition
Let \(\mathcal{U} \subseteq \text{Neigh } \mathbf{A} \).

1. \(\mathcal{U} \) is called cover of \(\mathbf{A} \) if
 \[
 \forall U \in \mathcal{U} : \varrho \lfloor U = \sigma \lfloor U \Rightarrow \varrho = \sigma
 \]
 for all \(\varrho, \sigma \in \text{clinv } \mathbf{A} \).
2. \(\mathcal{U} \) is called c-cover of \(\mathbf{A} \) if it is a cover of \(\mathbf{A} \) and every \(U \in \mathcal{U} \)
is closed w.r.t. \(T \).
How many neighbourhoods are “enough”?

Definition
Let \(\mathcal{U} \subseteq \text{Neigh} \ A \).

1. \(\mathcal{U} \) is called cover of \(A \) if

\[
\forall U \in \mathcal{U} : \varrho|_{U} = \sigma|_{U} \Rightarrow \varrho = \sigma
\]

for all \(\varrho, \sigma \in \text{clnv} \ A \).

2. \(\mathcal{U} \) is called c-cover of \(A \) if it is a cover of \(A \) and every \(U \in \mathcal{U} \)

is closed w.r.t. \(T \).

Moreover, let

\[
E_{A}(\mathcal{U}) := \bigcup \{ E_{A}(U) \mid U \in \mathcal{U} \}.
\]
Globalisation
Theorem

Let \(\mathcal{U} \subseteq \text{Neigh} \, A \). The following are equivalent:

(a) \(\mathcal{U} \) is a cover of \(A \).

(b) \(\text{id}_A \in \mathcal{L}(\mathcal{E}_A(\mathcal{U})) \).

(c) There is an index set \(\Phi \) and a map \(B : \Phi \to \{ A : \mathcal{U} \in \mathcal{U} \} \) such that \(A : \) is approximately a retract of \(\prod_{\phi \in \Phi} B : (\phi) \), i.e. there exists \(M : A : \to \prod_{\phi \in \Phi} B : (\phi) \) with \(\text{id}_A \in \mathcal{L}(\Lambda \circ M \mid \Lambda : \prod_{\phi \in \Phi} B : (\phi) \to A : \) \).
Globalisation

Theorem
Let $\mathcal{U} \subseteq \text{Neigh } A$. The following are equivalent:
(a) \mathcal{U} is a cover of A.

Globalisation

Theorem

Let $\mathcal{U} \subseteq \text{Neigh } A$. The following are equivalent:

(a) \mathcal{U} is a cover of A.

(b) $\text{id}_A \in \text{Loc } \langle E_A(\mathcal{U}) \rangle_{A^A}$.

Globalisation

Theorem

Let $\mathcal{U} \subseteq \text{Neigh} \, \mathbf{A}$. The following are equivalent:

(a) \mathcal{U} is a cover of \mathbf{A}.

(b) $\text{id}_A \in \text{Loc} \langle E_A(\mathcal{U}) \rangle_{A^A}$.

(c) There is an index set Φ and a map $B : \Phi \to \{ \mathbf{A} \mid U \mid U \in \mathcal{U} \}$ such that \mathbf{A} is approximately a retract of $\prod_{\varphi \in \Phi} B(\varphi)$, i.e. there exists $M : \mathbf{A} \to \prod_{\varphi \in \Phi} B(\varphi)$ with

$$\text{id}_A \in \text{Loc} \left\{ \Lambda \circ M \mid \Lambda : \prod_{\varphi \in \Phi} B(\varphi) \to \mathbf{A} \right\}.$$
What about the example?
What about the example?

Reminder

Let $R = \langle R, +, -, \cdot, 0 \rangle$ be a ring.

1. $e, f \in \text{Id} R$ orthogonal $\iff e \cdot f = f \cdot e = 0$.
What about the example?

Reminder
Let $R = \langle R, +, -, \cdot, 0 \rangle$ be a ring.

(1) $e, f \in \text{Id } R$ orthogonal $\iff e \cdot f = f \cdot e = 0$.

(2) $E \subseteq \text{Id } R$ orthogonal \iff any two distinct elements of E are orthogonal.
What about the example?

Reminder
Let $\mathbf{R} = \langle R, +, −, \cdot, 0 \rangle$ be a ring.

(1) $e, f \in \text{Id} \mathbf{R}$ orthogonal $\iff e \cdot f = f \cdot e = 0$.

(2) $E \subseteq \text{Id} \mathbf{R}$ orthogonal \iff any two distinct elements of E are orthogonal.

(3) $e \in \text{Id} \mathbf{R}$ primitive $\iff e \neq 0$ and for any two orthogonal idempotents $f_1, f_2 \in \text{Id} \mathbf{R}$ such that $e = f_1 + f_2$ it follows $f_1 = 0$ or $f_2 = 0$.
What about the example?

Reminder
Let \(R = \langle R, +, -, \cdot, 0 \rangle \) be a ring.

(1) \(e, f \in \text{Id } R \) orthogonal : \(\iff e \cdot f = f \cdot e = 0 \).

(2) \(E \subseteq \text{Id } R \) orthogonal : \(\iff \) any two distinct elements of \(E \) are orthogonal.

(3) \(e \in \text{Id } R \) primitive : \(\iff e \neq 0 \) and for any two orthogonal idempotents \(f_1, f_2 \in \text{Id } R \) such that \(e = f_1 + f_2 \) it follows \(f_1 = 0 \) or \(f_2 = 0 \).

Theorem (Gabriel, 1962)

Let \(R = \langle R, S, +, -, \cdot, 0, 1 \rangle \) be a compact Hausdorff topological ring, \(0 \neq 1 \). Then there exists an orthogonal set \(E \subseteq \text{Id } R \) of primitive idempotents such that \(1 = \sum_{e \in E} e \).
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \] compact Hausdorff topological ring,
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \] Hausdorff topological \(R \)-module.
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \text{ compact Hausdorff topological ring,} \]
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \text{ Hausdorff topological } R\text{-module.} \]

Lemma
\[\text{cNeigh } M = \{ \text{im } \lambda(e) \mid e \in \text{Id } R \}. \]
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \text{ compact Hausdorff topological ring,} \]
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \text{ Hausdorff topological } R\text{-module.} \]

Lemma
\[\text{cNeigh } M = \{ \text{im } \lambda(e) \mid e \in \text{Id } R \}. \]

Theorem
Let \(U \in \text{cNeigh } M, |U| > 1, \text{ and } m \in \mathbb{N}, \varrho, \sigma \in \text{clInv}^{(m)} M \) *such that* \(\varrho | U \neq \sigma | U \). TFAE:

Lemma
\[\text{cNeigh } M = \{ \text{im } \lambda(e) \mid e \in \text{Id } R \}. \]

Theorem
Let \(U \in \text{cNeigh } M, |U| > 1, \text{ and } m \in \mathbb{N}, \varrho, \sigma \in \text{clInv}^{(m)} M \) *such that* \(\varrho | U \neq \sigma | U \). TFAE:
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \] compact Hausdorff topological ring,
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \] Hausdorff topological \(R \)-module.

Lemma
\[\text{cNeigh} M = \{ \text{im} \lambda(e) \mid e \in \text{Id} R \}. \]

Theorem
Let \(U \in \text{cNeigh} M, \ |U| > 1, \) and \(m \in \mathbb{N}, \ \varrho, \sigma \in \text{cInv}^{(m)} M \) such that \(\varrho \upharpoonright U \neq \sigma \upharpoonright U \). TFAE:

(i) Every c-cover of \(M|_U \) contains \(U \).
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \text{ compact Hausdorff topological ring,} \]
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \text{ Hausdorff topological } R\text{-module.} \]

Lemma
\[\text{cNeigh } M = \{ \text{im } \lambda(e) \mid e \in \text{Id } R \}. \]

Theorem
Let \(U \in \text{cNeigh } M, \ |U| > 1, \text{ and } m \in \mathbb{N}, \varrho, \sigma \in \text{clnv}^{(m)} M \text{ such that } \varrho|_{U} \neq \sigma|_{U}. \text{ TFAE:} \]

(i) Every c-cover of \(M|_{U} \) contains \(U \).
(ii) \(U \in \text{Min}_{\subseteq}((\text{cNeigh } M) \setminus \{ \{0\}\}). \)
Seriously, what about the example?

\[\mathbb{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle \] compact Hausdorff topological ring,
\[\mathcal{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \] Hausdorff topological \(\mathbb{R} \)-module.

Lemma
\[\text{cNeigh} \mathcal{M} = \{ \text{im} \lambda(e) \mid e \in \text{Id} \mathbb{R} \}. \]

Theorem
Let \(U \in \text{cNeigh} \mathcal{M}, \ |U| > 1, \) and \(m \in \mathbb{N}, \varrho, \sigma \in \text{clnv}^{(m)} \mathcal{M} \) such that \(\varrho\mid_U \neq \sigma\mid_U. \) TFAE:

(i) Every c-cover of \(\mathcal{M}\mid_U \) contains \(U. \)

(ii) \(U \in \text{Min}_{\subseteq}((\text{cNeigh} \mathcal{M}) \setminus \{\{0\}\}). \)

(iii) \(U \in \text{Min}_{\subseteq}\{ V \in \text{cNeigh} \mathcal{M} \mid \varrho\mid_V \neq \sigma\mid_V \}. \)
Seriously, what about the example?

\[R = \langle R, S, +, -, \cdot, 0, 1 \rangle \text{ compact Hausdorff topological ring,} \]
\[M = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle \text{ Hausdorff topological } R\text{-module.} \]

Lemma
\[\text{cNeigh } M = \{ \text{im } \lambda(e) \mid e \in \text{Id } R \}. \]

Theorem
Let \(U \in \text{cNeigh } M, \ |U| > 1, \) and \(m \in \mathbb{N}, \ \varrho, \sigma \in \text{cln}v^{(m)} M \) such that \(\varrho|_U \neq \sigma|_U. \) TFAE:

(i) Every c-cover of \(M|_U \) contains \(U. \)

(ii) \(U \in \text{Min}_{c}((\text{cNeigh } M) \setminus \{\{0\}\}). \)

(iii) \(U \in \text{Min}_{c}\{ V \in \text{cNeigh } M \mid \varrho|_V \neq \sigma|_V \}. \)

(iv) There exists a primitive idempotent \(e \in \text{Id } R \) such that \(U = \text{im } \lambda(e). \)
The very last slide
Thank you for your attention!!
References:

1 Keith A. Kearnes.
Tame Congruence Theory is a localization theory.
Lecture Notes from “A Course in Tame Congruence Theory”

2 Keith A. Kearnes, LeAnne Conaway.
Minimal sets in finite rings.

3 Mike Behrisch.
Relational Tame Congruence Theory and Subalgebra Primal Algebras.

4 Mihail Ursul.
Topological Rings Satisfying Compactness Conditions.
Springer 2002.