A relational localisation theory for topological algebras

Friedrich Martin Schneider

Technische Universität Dresden

Novi Sad, March 17, 2012

Friedrich Martin Schneider

Technische Universität Dresden

Friedrich Martin Schneider

Technische Universität Dresden

I will ...

Friedrich Martin Schneider

Technische Universität Dresden

l will ...

sketch a general Galois theory for continuous operations and closed relations on a topological space

Technische Universität Dresden

I will ...

 sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.

l will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
- introduce a relational localisation theory for topological algebras,

I will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
- introduce a relational localisation theory for topological algebras, identify suitable subsets,

l will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
- introduce a relational localisation theory for topological algebras, identify suitable subsets, describe the restriction process

I will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
- introduce a relational localisation theory for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition.

I will ...

- sketch a general Galois theory for continuous operations and closed relations on a topological space and characterise the corresponding system of Galois closures.
- introduce a relational localisation theory for topological algebras, identify suitable subsets, describe the restriction process and explain how to reconstruct an algebra from its decomposition.
- explore the developed concepts for modules of compact rings.

The Galois connection cPol-clnv Let X = (A, T) be a topological space, $m, n \in \mathbb{N}$.

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 釣�?

Friedrich Martin Schneider

Technische Universität Dresden

The Galois connection cPol-clnv

Let X = (A, T) be a topological space, $m, n \in \mathbb{N}$.

$$\begin{split} \mathsf{O}_{A}^{(n)} &:= A^{A^{n}}, & \mathsf{R}_{A}^{(m)} := \mathfrak{P}(A^{m}), \\ \mathsf{O}_{A} &:= \bigcup_{n \in \mathbb{N}} \mathsf{O}_{A}^{(n)}, & \mathsf{R}_{A} := \bigcup_{m \in \mathbb{N}} \mathsf{R}_{A}^{(m)}, \\ \mathsf{cO}_{X}^{(n)} &:= C(X^{n}; X), & \mathsf{cR}_{X}^{(m)} := \{\varrho \subseteq A^{m} \mid \varrho \text{ closed in } X^{m}\}, \\ \mathsf{cO}_{X} &:= \bigcup_{n \in \mathbb{N}} \mathsf{cO}_{X}^{(n)}, & \mathsf{cR}_{X} := \bigcup_{m \in \mathbb{N}} \mathsf{cR}_{X}^{(m)}. \end{split}$$

Friedrich Martin Schneider

The Galois connection cPol-cInv

Let X = (A, T) be a topological space, $m, n \in \mathbb{N}$.

$$O_{A}^{(n)} := A^{A^{n}}, \qquad \mathsf{R}_{A}^{(m)} := \mathfrak{P}(A^{m}),$$

$$O_{A} := \bigcup_{n \in \mathbb{N}} O_{A}^{(n)}, \qquad \mathsf{R}_{A} := \bigcup_{m \in \mathbb{N}} \mathsf{R}_{A}^{(m)},$$

$$\mathsf{cO}_{X}^{(n)} := C(X^{n}; X), \qquad \mathsf{cR}_{X}^{(m)} := \{\varrho \subseteq A^{m} \mid \varrho \text{ closed in } X^{m}\},$$

$$\mathsf{cO}_{X} := \bigcup_{n \in \mathbb{N}} \mathsf{cO}_{X}^{(n)}, \qquad \mathsf{cR}_{X} := \bigcup_{m \in \mathbb{N}} \mathsf{cR}_{X}^{(m)}.$$

For $f \in O_A^{(n)}$ and $\varrho \in \mathsf{R}_A^{(m)}$,

Technische Universität Dresden

Friedrich Martin Schneider

The Galois connection cPol-cInv

Let X = (A, T) be a topological space, $m, n \in \mathbb{N}$.

$$O_{A}^{(n)} := A^{A^{n}}, \qquad \mathsf{R}_{A}^{(m)} := \mathfrak{P}(A^{m}),$$

$$O_{A} := \bigcup_{n \in \mathbb{N}} O_{A}^{(n)}, \qquad \mathsf{R}_{A} := \bigcup_{m \in \mathbb{N}} \mathsf{R}_{A}^{(m)},$$

$$\mathsf{cO}_{X}^{(n)} := C(X^{n}; X), \qquad \mathsf{cR}_{X}^{(m)} := \{\varrho \subseteq A^{m} \mid \varrho \text{ closed in } X^{m}\},$$

$$\mathsf{cO}_{X} := \bigcup_{n \in \mathbb{N}} \mathsf{cO}_{X}^{(n)}, \qquad \mathsf{cR}_{X} := \bigcup_{m \in \mathbb{N}} \mathsf{cR}_{X}^{(m)}.$$
For $f \in O_{A}^{(n)}$ and $\varrho \in \mathsf{R}_{A}^{(m)},$

$$f \rhd \varrho \quad : \iff \forall r_{0}, \dots, r_{n-1} \in \varrho : f \circ \langle r_{0}, \dots, r_{n-1} \rangle \in \varrho$$

$$\iff \varrho \in \mathsf{Sub}(\langle A; f \rangle^{m})$$

$$\iff f \in \operatorname{Hom}(\langle A; \varrho \rangle^n; \langle A; \varrho \rangle).$$

Friedrich Martin Schneider

The Galois connection cPol-cInv (cont'd.)

- < ロ > < 個 > < 注 > < 注 > 三 - つへの

Friedrich Martin Schneider

Technische Universität Dresden

The Galois connection cPol-clnv (cont'd.) For $F \subseteq cO_X$,

Friedrich Martin Schneider

Technische Universität Dresden

The Galois connection cPol-cInv (cont'd.) For $F \subseteq cO_X$,

 $\mathsf{clnv}\langle A, T, F \rangle := \mathsf{clnv}_X F := \{ \varrho \in \mathsf{cR}_X \mid \forall f \in F : f \rhd \varrho \},\$

◆□ > ◆部 > ◆臣 > ◆臣 > ─臣 ──のへの

Friedrich Martin Schneider

Technische Universität Dresden

The Galois connection cPol-cInv (cont'd.) For $F \subseteq cO_X$,

 $\mathsf{cInv}\langle A, T, F \rangle := \mathsf{cInv}_X F := \{ \varrho \in \mathsf{cR}_X \mid \forall f \in F : f \rhd \varrho \},\$

for $Q \subseteq cR_X$,

Friedrich Martin Schneider

Technische Universität Dresden

The Galois connection cPol-cInv (cont'd.) For $F \subseteq cO_X$,

 $\mathsf{clnv}\langle A, T, F \rangle := \mathsf{clnv}_X F := \{ \varrho \in \mathsf{cR}_X \mid \forall f \in F : f \rhd \varrho \},\$

for $Q \subseteq cR_X$,

 $cPol\langle A, T, Q \rangle := cPol_X Q := \{ f \in cO_X \mid \forall \varrho \in Q : f \rhd \varrho \}.$

Technische Universität Dresden

The Galois connection cPol-clnv (cont'd.) For $F \subseteq cO_X$,

 $\mathsf{cInv}\langle A, T, F \rangle := \mathsf{cInv}_X F := \{ \varrho \in \mathsf{cR}_X \mid \forall f \in F : f \rhd \varrho \},\$

for $Q \subseteq cR_X$,

 $\mathsf{cPol}\langle A, T, Q \rangle := \mathsf{cPol}_X Q := \{ f \in \mathsf{cO}_X \mid \forall \varrho \in Q : f \rhd \varrho \}.$

How can we describe the closure system induced by this Galois connection?

- **▲ ロ ▶ ▲ @ ▶ ▲ 전 ▶ ▲ 전 ▲ ① ▲ ① ▲ ①** ▲ ⑦ � ♡

Friedrich Martin Schneider

Technische Universität Dresden

Reminder

A set $F \subseteq O_A$ is called clone of operations on A if

- (1) F contains all projections,
- (2) for $m, n \in \mathbb{N}$, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

Friedrich Martin Schneider

Reminder

A set $F \subseteq O_A$ is called clone of operations on A if

(1) F contains all projections,

(2) for
$$m, n \in \mathbb{N}$$
, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by Clo(F).

Reminder

A set $F \subseteq O_A$ is called clone of operations on A if

(1) F contains all projections,

(2) for
$$m, n \in \mathbb{N}$$
, $f \in F^{(n)}$, $f_0, \ldots, f_{n-1} \in F^{(m)}$, we also have $f \circ \langle f_0, \ldots, f_{n-1} \rangle \in F$.

For any set $F \subseteq O_A$, the smallest clone on A containing F is denoted by Clo(F).

Obviously, cO_X is a clone of operations on A.

Friedrich Martin Schneider

Technische Universität Dresden

Definition

A set $Q \subseteq cR_X$ is called clone of closed relations on X if Q is closed w.r.t. general superposition of closed relations

Friedrich Martin Schneider

Technische Universität Dresden

Definition

A set $Q \subseteq cR_X$ is called clone of closed relations on X if Q is closed w.r.t. general superposition of closed relations, that is: Whenever I is a set, Y = (B, S) a topological space, $m, m_i \in \mathbb{N}$, $\varphi : m \to B, \varphi_i : m_i \to B$ and $\varrho_i \in Q^{(m_i)}$ for $i \in I$, then

$$\overline{\bigwedge_{(\varphi_i)_{i\in I}}^{\varphi,Y,X}(\varrho_i)_{i\in I}}^{X^m}\in Q$$

where

$$\bigwedge_{(\varphi_i)_{i\in I}}^{\varphi,Y,X} (\varrho_i)_{i\in I} := \{ r \circ \varphi \mid r \in C(Y;X), \forall i \in I : r \circ \varphi_i \in \varrho_i \}.$$

Friedrich Martin Schneider

Technische Universität Dresden

Definition

A set $Q \subseteq cR_X$ is called clone of closed relations on X if Q is closed w.r.t. general superposition of closed relations, that is: Whenever I is a set, Y = (B, S) a topological space, $m, m_i \in \mathbb{N}$, $\varphi : m \to B, \varphi_i : m_i \to B$ and $\varrho_i \in Q^{(m_i)}$ for $i \in I$, then

$$\overline{\bigwedge_{(\varphi_i)_{i\in I}}^{\varphi,Y,X}(\varrho_i)_{i\in I}}^{X^m}\in Q$$

where

$$\bigwedge_{(\varphi_i)_{i\in I}}^{\varphi,Y,X}(\varrho_i)_{i\in I} := \{r \circ \varphi \mid r \in C(Y;X), \forall i \in I : r \circ \varphi_i \in \varrho_i\}.$$

For any set $Q \subseteq cR_X$, the smallest clone of closed relations on X containing Q is denoted by CLO(Q).

Friedrich Martin Schneider

Technische Universität Dresden

Local closure operators

< □ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ⊂

Friedrich Martin Schneider

Technische Universität Dresden

Local closure operators

Definition For $F \subseteq cO_X$, $Q \subseteq cR_X$ and $s \in \mathbb{N}$:

Friedrich Martin Schneider

Technische Universität Dresden

Local closure operators

Technische Universität Dresden

Friedrich Martin Schneider

- < ロ > < 団 > < 注 > < 注 > _ 注 = _ つへで

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $F \subseteq cO_X$. Then:

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $F \subseteq cO_X$. Then: (a) s-Loc Clo(F) = cPol clnv^(s) F for $s \in \mathbb{N}$.

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $F \subseteq cO_X$. Then: (a) s-Loc Clo(F) = cPol clnv^(s) F for $s \in \mathbb{N}$. (b) Loc Clo(F) = cPol clnv F.

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $F \subseteq cO_X$. Then: (a) s-Loc Clo(F) = cPol clnv^(s) F for $s \in \mathbb{N}$. (b) Loc Clo(F) = cPol clnv F.

Theorem Let $Q \subseteq cR_X$. Then:

Friedrich Martin Schneider

Technische Universität Dresden
Characterising the Galois closures

Theorem Let $F \subseteq cO_X$. Then: (a) s-Loc Clo(F) = cPol clnv^(s) F for $s \in \mathbb{N}$. (b) Loc Clo(F) = cPol clnv F.

Theorem Let $Q \subseteq cR_X$. Then: (a) s-LOC CLO(Q) = clnv cPol^(s) Q for $s \in \mathbb{N}$.

Friedrich Martin Schneider

Technische Universität Dresden

Characterising the Galois closures

Theorem Let $F \subseteq cO_X$. Then: (a) s-Loc Clo(F) = cPol clnv^(s) F for $s \in \mathbb{N}$. (b) Loc Clo(F) = cPol clnv F.

Theorem Let $Q \subseteq cR_X$. Then: (a) s-LOC CLO(Q) = clnv cPol^(s) Q for $s \in \mathbb{N}$. (b) LOC CLO(Q) = clnv cPol Q.

Friedrich Martin Schneider

Technische Universität Dresden

Friedrich Martin Schneider

Technische Universität Dresden

A localisation theory consists of three main ingredients.

Friedrich Martin Schneider

Technische Universität Dresden

A localisation theory consists of three main ingredients.(1) Localisation: Restricting the structure to suitable subsets.

A localisation theory consists of three main ingredients.

- (1) **Localisation**: Restricting the structure to suitable subsets.
- (2) Classification: Calculating locally.

Topologising RST

A localisation theory consists of three main ingredients.

- (1) **Localisation**: Restricting the structure to suitable subsets.
- (2) **Classification**: Calculating locally.
- (3) Globalisation: Combining local results into global results.

Topologising RST

A localisation theory consists of three main ingredients.

- (1) **Localisation**: Restricting the structure to suitable subsets.
- (2) **Classification**: Calculating locally.
- (3) Globalisation: Combining local results into global results.

What are the suitable subsets for this kind of localisation theory?

<ロ> <部> < 注> < 注> < 注) < つ</p>

Friedrich Martin Schneider

Technische Universität Dresden

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathbf{A}}(U) := \left\{ e \mid e \in \operatorname{Loc} \operatorname{Clo}^{(1)}(F), \operatorname{im} e \subseteq U \right\}.$$

▲ロ → ▲個 → ▲目 → ▲目 → ● ● ● ● ●

Friedrich Martin Schneider

Technische Universität Dresden

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathsf{A}}(U) := \left\{ e \mid e \in \operatorname{Loc} \operatorname{Clo}^{(1)}(F), \operatorname{im} e \subseteq U
ight\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

Friedrich Martin Schneider

Technische Universität Dresden

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathsf{A}}(U) := \left\{ e \mid e \in \operatorname{Loc} \operatorname{Clo}^{(1)}(F), \operatorname{im} e \subseteq U
ight\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\downarrow_U: \operatorname{clnv} \mathbf{A} \to \operatorname{cR}_{(U,T_U)}, \varrho \mapsto \varrho \uparrow_U := \varrho \cap U^{\operatorname{ar} \varrho}$ is a homomorphism between clones of closed relations.

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathsf{A}}(U) := \left\{ e \mid e \in \operatorname{Loc} \operatorname{Clo}^{(1)}(F), \operatorname{im} e \subseteq U
ight\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \upharpoonright_U : \operatorname{clnv} \mathbf{A} \to \operatorname{cR}_{(U,T_U)}, \varrho \mapsto \varrho \upharpoonright_U := \varrho \cap U^{\operatorname{ar} \varrho}$ is a homomorphism between clones of closed relations.

(b)
$$\operatorname{id}_U \in \operatorname{Loc} \left\{ e |_U^U | e \in E_{\mathbf{A}}(U) \right\}.$$

Let $\mathbf{A} = \langle A; T; F \rangle$ be a topological algebra. For $U \subseteq A$,

$$E_{\mathsf{A}}(U) := \left\{ e \mid e \in \operatorname{Loc} \operatorname{Clo}^{(1)}(F), \operatorname{im} e \subseteq U
ight\}.$$

Lemma

Let $U \subseteq A$. The following are equivalent:

(a) $\cdot \upharpoonright_U : \operatorname{clnv} \mathbf{A} \to \operatorname{cR}_{(U,T_U)}, \varrho \mapsto \varrho \upharpoonright_U := \varrho \cap U^{\operatorname{ar} \varrho}$ is a homomorphism between clones of closed relations.

(b)
$$\operatorname{id}_U \in \operatorname{Loc} \left\{ e |_U^U | e \in E_{\mathbf{A}}(U) \right\}$$

Additionally, if (a) holds, then

$$[Q]{\upharpoonright}_U := \{ \varrho{\upharpoonright}_U \mid \varrho \in Q \}$$
 is locally closed

for every locally closed clone of closed relations $Q \subseteq \operatorname{clnv} \mathbf{A}$.

Friedrich Martin Schneider

Technische Universität Dresden

Restricting algebras to neighbourhoods

Friedrich Martin Schneider

| ▲ □ ▶ | ▲ 圖 ▶ | ▲ 国 ▶ | ▲ 国 ▶ | ◆ 国 ▶ | ◆ 回 ▶ | ▲ 回 ▶ | ◆ 回 ▶ | ■ | → ○ へ ©

Friedrich Martin Schneider

Technische Universität Dresden

Definition

Let $\mathcal{U} \subseteq \mathsf{Neigh} \mathbf{A}$.

(1) \mathcal{U} is called cover of **A** if

$$\forall U \in \mathcal{U} : \varrho \restriction_U = \sigma \restriction_U] \Rightarrow \varrho = \sigma$$

for all $\varrho, \sigma \in \operatorname{cInv} \mathbf{A}$.

A relational localisation theory for topological algebras

Friedrich Martin Schneider

Definition

Let $\mathcal{U} \subseteq \mathsf{Neigh} \mathbf{A}$.

(1) \mathcal{U} is called cover of **A** if

$$[\forall U \in \mathcal{U} : \varrho \upharpoonright_U = \sigma \upharpoonright_U] \Rightarrow \varrho = \sigma$$

for all $\varrho, \sigma \in \operatorname{cInv} \mathbf{A}$.

(2) \mathcal{U} is called c-cover of **A** if it is a cover of **A** and every $U \in \mathcal{U}$ is closed w.r.t. \mathcal{T} .

Definition

Let $\mathcal{U} \subseteq \mathsf{Neigh} \mathbf{A}$.

(1) \mathcal{U} is called cover of **A** if

$$[\forall U \in \mathcal{U} : \varrho \upharpoonright_U = \sigma \upharpoonright_U] \Rightarrow \varrho = \sigma$$

for all $\varrho, \sigma \in \operatorname{cInv} \mathbf{A}$.

(2) \mathcal{U} is called c-cover of **A** if it is a cover of **A** and every $U \in \mathcal{U}$ is closed w.r.t. T.

Moreover, let

$$E_{\mathbf{A}}(\mathcal{U}) := \bigcup \{ E_{\mathbf{A}}(\mathcal{U}) \mid \mathcal{U} \in \mathcal{U} \}.$$

Friedrich Martin Schneider

Technische Universität Dresden

- * ロ * * @ * * 注 * * 注 * うへの

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $\mathcal{U} \subseteq$ Neigh **A**. The following are equivalent:

Friedrich Martin Schneider

Technische Universität Dresden

Theorem Let $\mathcal{U} \subseteq \text{Neigh } \mathbf{A}$. The following are equivalent: (a) \mathcal{U} is a cover of \mathbf{A} .

Technische Universität Dresden

Theorem Let $\mathcal{U} \subseteq \text{Neigh } \mathbf{A}$. The following are equivalent: (a) \mathcal{U} is a cover of \mathbf{A} . (b) $\text{id}_A \in \text{Loc} \langle E_{\mathbf{A}}(\mathcal{U}) \rangle_{\mathbf{A}^A}$.

Theorem

Let $\mathcal{U} \subseteq \text{Neigh } \mathbf{A}$. The following are equivalent:

- (a) \mathcal{U} is a cover of **A**.
- (b) $\operatorname{id}_A \in \operatorname{Loc} \langle E_{\mathbf{A}}(\mathcal{U}) \rangle_{\mathbf{A}^A}$.
- (c) There is an index set Φ and a map $\mathbf{B} : \Phi \to \{\mathbf{A} \upharpoonright_U \mid U \in \mathcal{U}\}$ such that \mathbf{A} is approximately a retract of $\prod_{\varphi \in \Phi} \mathbf{B}(\varphi)$, i.e. there exists $M : \mathbf{A} \to \prod_{\varphi \in \Phi} \mathbf{B}(\varphi)$ with

$$\mathsf{id}_{\mathcal{A}} \in \mathsf{Loc}\left\{\Lambda \circ M \mid \Lambda : \prod_{\varphi \in \Phi} \mathbf{\underline{B}}(\varphi) \to \mathbf{\underline{A}}\right\}.$$

Friedrich Martin Schneider

Technische Universität Dresden

<ロ> <部> < 注> < 注> < 注) < つ</p>

Friedrich Martin Schneider

Technische Universität Dresden

Reminder Let $\mathbf{R} = \langle R, +, -, \cdot, 0 \rangle$ be a ring. (1) $e, f \in \mathsf{Id} \, \mathbf{R}$ orthogonal : $\iff e \cdot f = f \cdot e = 0$.

Friedrich Martin Schneider

Technische Universität Dresden

Reminder

Let $\mathbf{R} = \langle R, +, -, \cdot, 0 \rangle$ be a ring.

(1) $e, f \in \mathsf{Id} \, \mathbf{R} \text{ orthogonal} :\iff e \cdot f = f \cdot e = 0.$

(2) $E \subseteq \text{Id } \mathbf{R} \text{ orthogonal} : \iff$ any two distinct elements of E are orthogonal.

Reminder

Let $\mathbf{R} = \langle R, +, -, \cdot, 0 \rangle$ be a ring.

(1) $e, f \in \mathsf{Id} \, \mathbf{R} \text{ orthogonal} :\iff e \cdot f = f \cdot e = 0.$

- (2) $E \subseteq \text{Id } \mathbf{R} \text{ orthogonal} :\iff$ any two distinct elements of E are orthogonal.
- (3) $e \in \text{Id } \mathbf{R}$ primitive : $\iff e \neq 0$ and for any two orthogonal idempotents $f_1, f_2 \in \text{Id } \mathbf{R}$ such that $e = f_1 + f_2$ it follows $f_1 = 0$ or $f_2 = 0$.

Reminder

Let $\mathbf{R} = \langle R, +, -, \cdot, 0 \rangle$ be a ring.

(1) $e, f \in \mathsf{Id} \, \mathbf{R} \text{ orthogonal} :\iff e \cdot f = f \cdot e = 0.$

- (2) $E \subseteq \text{Id } \mathbf{R} \text{ orthogonal} :\iff$ any two distinct elements of E are orthogonal.
- (3) $e \in \text{Id } \mathbf{R}$ primitive : $\iff e \neq 0$ and for any two orthogonal idempotents $f_1, f_2 \in \text{Id } \mathbf{R}$ such that $e = f_1 + f_2$ it follows $f_1 = 0$ or $f_2 = 0$.

Theorem (Gabriel, 1962)

Let $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ be a compact Hausdorff topological ring, $0 \neq 1$. Then there exists an orthogonal set $E \subseteq \operatorname{Id} \mathbf{R}$ of primitive idempotents such that $1 = \sum_{e \in F} e$.

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Friedrich Martin Schneider

Technische Universität Dresden

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Friedrich Martin Schneider

Technische Universität Dresden

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Theorem

Let $U \in \text{cNeigh } \mathbf{M}$, |U| > 1, and $m \in \mathbb{N}$, $\rho, \sigma \in \text{cInv}^{(m)} \mathbf{M}$ such that $\rho \upharpoonright_U \neq \sigma \upharpoonright_U$. TFAE:

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Theorem

Let $U \in \text{cNeigh } \mathbf{M}$, |U| > 1, and $m \in \mathbb{N}$, $\varrho, \sigma \in \text{cInv}^{(m)} \mathbf{M}$ such that $\varrho \upharpoonright_U \neq \sigma \upharpoonright_U$. TFAE:

(i) Every c-cover of $\mathbf{M}|_U$ contains U.

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Theorem

Let $U \in \text{cNeigh } \mathbf{M}$, |U| > 1, and $m \in \mathbb{N}$, $\varrho, \sigma \in \text{cInv}^{(m)} \mathbf{M}$ such that $\varrho \upharpoonright_U \neq \sigma \upharpoonright_U$. TFAE:

(i) Every c-cover of $\mathbf{M}|_U$ contains U.

(ii) $U \in Min_{\subseteq}((cNeigh \mathbf{M}) \setminus \{\{0\}\}).$

Friedrich Martin Schneider

Technische Universität Dresden

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Theorem

Let $U \in \text{cNeigh } \mathbf{M}$, |U| > 1, and $m \in \mathbb{N}$, $\varrho, \sigma \in \text{cInv}^{(m)} \mathbf{M}$ such that $\varrho \upharpoonright_U \neq \sigma \upharpoonright_U$. TFAE:

(i) Every c-cover of $\mathbf{M}|_U$ contains U.

(ii)
$$U \in Min_{\subseteq}((cNeigh \mathbf{M}) \setminus \{\{0\}\}).$$

(iii) $U \in \operatorname{Min}_{\subseteq} \{ V \in \operatorname{cNeigh} \mathbf{M} \mid \varrho \upharpoonright_{V} \neq \sigma \upharpoonright_{V} \}.$

 $\mathbf{R} = \langle R, S, +, -, \cdot, 0, 1 \rangle$ compact Hausdorff topological ring, $\mathbf{M} = \langle M, T, +, -, 0, (\lambda(r))_{r \in R} \rangle$ Hausdorff topological **R**-module.

Lemma

cNeigh $\mathbf{M} = \{ \operatorname{im} \lambda(e) \mid e \in \operatorname{Id} \mathbf{R} \}.$

Theorem

Let $U \in \text{cNeigh } \mathbf{M}$, |U| > 1, and $m \in \mathbb{N}$, $\varrho, \sigma \in \text{cInv}^{(m)} \mathbf{M}$ such that $\varrho \upharpoonright_U \neq \sigma \upharpoonright_U$. TFAE:

- (i) Every c-cover of $\mathbf{M}|_U$ contains U.
- (ii) $U \in Min_{\subseteq}((cNeigh \mathbf{M}) \setminus \{\{0\}\}).$
- (iii) $U \in \operatorname{Min}_{\subseteq} \{ V \in \operatorname{cNeigh} \mathbf{M} \mid \varrho \upharpoonright_{V} \neq \sigma \upharpoonright_{V} \}.$

(iv) There exists a primitive idempotent $e \in Id \mathbf{R}$ such that $U = im \lambda(e)$.
The very last slide

- < ロ > < 団 > < 三 > < 三 > < 三 > へ 口 > <

Friedrich Martin Schneider

Technische Universität Dresden

A relational localisation theory for topological algebras

The very last slide

Thank you for your attention!!

・ロト ・母 ト ・目 ト ・ 目 ・ つくの

Friedrich Martin Schneider

Technische Universität Dresden

A relational localisation theory for topological algebras

References:

1 Keith A. Kearnes.

Tame Congruence Theory is a localization theory. Lecture Notes from "A Course in Tame Congruence Theory" Workshop, Budapest, 2001.

- 2 KEITH A. KEARNES, LEANNE CONAWAY. Minimal sets in finite rings. Algebra Universalis 51 (2004), 81–109.
- 3 Mike Behrisch.

Relational Tame Congruence Theory and Subalgebra Primal Algebras.

Master's thesis, Dresden University of Technology, 2009.

4 MIHAIL URSUL.

Topological Rings Satisfying Compactness Conditions. Springer 2002.