Generating Direct Powers

Nik Ruškuc
nik@mcs.st-and.ac.uk
School of Mathematics and Statistics, University of St Andrews

Novi Sad, 16 March 2012

Algebraic structures

- Classical: groups, rings, modules, algebras, Lie algebras.
- Semigroups.
- Modern: lattices, boolean algebras, loops, tournaments, relational algebras, universal algebras,...

The d-sequence

For an algebraic structure A :

- $d(A)=$ the smallest number of generators for A.
- $A^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in A\right\}$.
- $\mathbf{d}(A)=\left(d(A), d\left(A^{2}\right), d\left(A^{3}\right), \ldots\right)$.

Some basic properties:

- $\mathbf{d}(A)$ is non-decreasing.
- $\mathbf{d}(A)$ is bounded above by $|A|^{n}$.
- If A has an 'identity element' then $d\left(A^{n}\right) \leq n d(A)$.

General problem

Relate algebraic properties of A with numerical properties (e.g. the rate of growth) of its \mathbf{d} sequence.

Groups

Jim Wiegold and collaborators, 1974-89.

- $\mathbf{d}(G)$ is linear if G is non-perfect $\left(G^{\prime} \neq G\right)$;
- $\mathbf{d}(G)$ is logarithmic if G is finite and perfect;
- $\mathbf{d}(G)$ is bounded above by a logarithmic function if G is infinite and perfect;
- $\mathbf{d}(G)$ is eventually constant if G is infinite simple.

Open Problem

Can $\mathbf{d}(G)$ be strictly between constant and logarithmic?

Open Problem

Does there exist an infinite simple group G such that $d\left(G^{n}\right)=d(G)+1$ for some n ?

Classical structures

Martyn Quick, NR.

Theorem
The d-sequence of a finite non-trivial classical structure grows either logarithmically or linearly. Those with logarithmic growth are: perfect groups, rings with 1, algebras with 1, and perfect Lie algebras.

Theorem

The d-sequence of an infinite classical structure grows either linearly or sub-logarithmically. Simple structures have eventually constant d-sequences.

Congruence permutable varieties

Arthur Geddes; Peter Mayr.
Theorem
The d-sequence of a finite non-trivial structure belonging to a congruence permutable variety is either logarithmic or linear.

Theorem
The d-sequence of an infinite structure belonging to a congruence permutable variety grows either linearly or sub-logarithmically. Simple structures have eventually constant d-sequences.

Some other structures

- Lattices: sub-logarithmic. (Geddes)
- Finite tournaments: linear or logarithmic. (Geddes)
- 2-element algebras: logarithmic, linear or exponential. (St Andrews summer students)
- There exist 3-element algebras with polynomial growth of arbitrary degree. (Geddes; Kearnes, Szendrei?)

Representation Theorem

Theorem (Geddes)
For every non-decreasing sequence s there exists an algebraic structure A with $\mathbf{d}(A)=\mathbf{s}$.

Open Problem
Characterise the \mathbf{d}-sequences of finite algebraic structures.

Sequences in algebra

- Grätzer et al.: p_{n}-sequences, free spectra.
- Berman et al. (2009): three sequences s, \mathbf{g}, \mathbf{i} to do with subuniverses of $\mathbf{A}^{\mathbf{n}}$ and their generating sets.

Theorem (Kearnes, Szendrei?)
The d-sequence of a finite algebraic structure with few subpowers is either logarithmic or linear.
Another direction: quantified constraint satisfaction (Chen).

Intermezzo: an elementary question

Very important. Would you ask an understanding and indulgent maths colleague how many digits there would be in the result of multiplying $1 \times 2 \times 3 \times 4$ etc. up to 1000 (1000 being the last multiplier and the product of all numbers from 1 to 999 being the last multiplicand). If there is any way of obtaining the exact result (but here I have the feeling that I am raving) without too much drudgery, by using for example logarithms or a calculator, I'm all for it. But in any event how many figures overall. I'll be satisfied with that. (S. Beckett to M. Peron, 1952)

Finite semigroups

Example

If S is a left zero semigroup $(x y=x)$ then

$$
\mathbf{d}(S)=\left(|S|,|S|^{2},|S|^{3}, \ldots\right)
$$

Theorem (Wiegold 1987)
For a finite (non-group) semigroup S we have:

- $\mathbf{d}(S)$ is linear if S is a monoid;
- otherwise $\mathbf{d}(S)$ is exponential.

Infinite semigroups: how bad can they get?

Example
$\mathbf{d}(\mathbb{N})=(1, \infty, \infty, \ldots)$.
Theorem (EF Robertson, NR, J Wiegold)
Let S, T be two infinite semigroups. $S \times T$ is finitely generated if and only if S and T are finitely generated and neither has indecomposable elements, in which case

$$
S=\langle A \times B\rangle
$$

for some finite sets A and B.
Corollary
Either $d\left(S^{n}\right)=\infty$ for all $n \geq 2$ or else $\mathbf{d}(S)$ is sub-exponential.

Linear - exponential - logarithmic

Theorem (Hyde, Loughlin, Quick, NR, Wallace)
Let S be a finitely generated semigroup. If S is a principal left and right ideal then $\mathbf{d}(S)$ is sub-linear, otherwise it is super-exponential.

Conjecture (Hyde)
The \mathbf{d}-sequence of a semigroup cannot be strictly between logarithmic and linear.

Polycyclic monoid

Definition

$$
P_{k}=\left\langle b_{i}, c_{i}(i=1, \ldots, k) \mid b_{i} c_{i}=1, b_{i} c_{j}=0(i \neq j)\right\rangle
$$

Fact
$P_{k}(k \geq 2)$ is an infinite, congruence-free monoid.
Theorem (Hyde, Loughlin, Quick, NR, Wallace) $\mathbf{d}\left(P_{k}\right)=(2 k-1,3 k-1,4 k-1, \ldots)$.

Recursive functions

Theorem (Hyde, Loughlin, Quick, NR, Wallace)
For the monoid $R_{\mathbb{N}}$ of all partially recursive functions in one variable we have

$$
\mathbf{d}\left(R_{\mathbb{N}}\right)=(2,2,2, \ldots)
$$

Some More Open Problems

- Does there exist a semigroup (or any algebraic structure) such that $\mathbf{d}(S)$ is eventually constant, but stabilises later than the 2nd term?
- Does there exist a semigroup (or any algebraic structure) such that $\mathbf{d}(S)$ is eventually constant but with value different from $d(S)$ or $d(S)+1$?
- Is it true that the d-sequence of a finite algebraic structure is either logarithmic, polynomial or exponential?
- If one considers generation modulo the diagonal

$$
\Delta_{n}(A)=\{(a, \ldots, a): a \in A\}
$$

(so that infinitely generated structures can be included too), what new (if any) growth rates appear?

. . . answer?

I could not make much sense of your maths friend's explanations. It is no matter: the masterpiece that needed it is five fathoms under. Thank you (...) all the same. (S. Beckett to M. Peron, two weeks later)

