Unary polynomial functions on a class of finite groups

Peeter Puusemp
University of Tartu

Novi Sad, March 15-18, 2012

Abstract
We describe unary polynomial functions on finite groups G that are semidirect products of an elementary abelian group of exponent p and a cyclic group of prime order $q, p \neq q$.

This is a joint work with prof. Kalle Kaarli (University of Tartu).

Definition

Given an algebraic structure A, an n-ary polynomial function on A is a mapping $A^{n} \rightarrow A$ that can be presented as a compostition of fundamental operations of A, projection maps and constant maps.

Note
We consider only unary polynomial functions.

Examples

Example 1

Polynomial functions on a commutative ring R are precisely the usual polynomial functions, that is, the functions $f: R \rightarrow R$ that can be defined by the formula

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{s} x^{s}
$$

where $a_{0}, a_{1}, \ldots, a_{s} \in R$.

Example 2

If A is a left module over a ring R then a function $f: A \rightarrow A$ is a polynomial function on A if and only if there exist $r \in R$ and $a \in A$ such that $f(x)=r x+a$ for each $x \in A$.

Examples

Example 3

Let $(G ;+)$ be a group. Then a function $f: G \rightarrow G$ is a polynomial function if and only if there are $a_{1}, a_{2}, \ldots a_{s+1} \in G$ and $e_{1}, e_{2}, \ldots, e_{s+1} \in \mathbb{Z}$, such that for each $x \in G$

$$
f(x)=a_{1}+e_{1} x+a_{2}+e_{2} x+\ldots+a_{s}+e_{s} x+a_{s+1}
$$

Example 4
If G is a finite group, any function $f \in P(G)$ has the following form:
$f(x)=\left(a_{1}+x-a_{1}\right)+\left(a_{2}+x-a_{2}\right)+\ldots+\left(a_{s-1}+x-a_{s-1}\right)+a_{s}$.

Studied cases

The size of $P(G)$ is known

- for all groups with $|G| \leq 100$
- all simple groups
- all abelian groups
- the symmetric groups S_{n}
- dihedral and generalized dihedral groups
- generalized quaternion groups
- dicyclic groups
- certain subdirectly irreducible groups (including the nonabelian groups of order qp)
- general linear groups

The group in consideration

Our aim is to describe $P(G)$ in case when G is a semidirect product of an elementary abelian group of exponent p and a cyclic group of prime order $q, q \neq p$.

Definition

Suppose that we are given two groups A and B, and a homomorphism $\alpha: B \rightarrow$ Aut A. The external semidirect product $G=A \rtimes_{\alpha} B$ is defined as the direct product of sets $A \times B$ with the group operation

$$
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+\alpha\left(b_{1}\right)\left(a_{2}\right), b_{1}+b_{2}\right)
$$

The group in consideration

We shall identify every $a \in A$ with $(a, 0) \in G$ and every $b \in B$ with $(0, b) \in G$.
After such identifiction

- A is a normal subgroup of $G(A \unlhd G)$
- B is a subgroup of $G(B \leq G)$
- $b+a-b=\alpha(b)(a)$ for all $a \in A, b \in B$

Given finite $G=A \rtimes_{\alpha} B$ natural homomorphism $G \rightarrow G / A$ induces the surjective group homomorphism $\Phi: P(G) \rightarrow P(G / A)$.

$$
K:=\operatorname{Ker} \Phi=\{p \in P(G) \mid p(G) \subseteq A\}
$$

Let T be a transversal of cosets of K in $P(G)$. Then each polynomial of G has a unique representation in the form of sum $f+g$ where $f \in T, g \in K$.

Let $|B|=q, B=\left\{0=b_{0}, \ldots, b_{q-1}\right\}$ and $K_{i}=\left\{\left.p\right|_{b_{i}+A} \mid p \in K\right\}$, $i=0,1, \ldots, q-1$.

Obviously, every $p \in K$ determines a q-tuple $\left(\left.p\right|_{b_{0}+A}, \ldots,\left.p\right|_{b_{q-1}+A}\right)$. Hence, we have a one-to-one mapping

$$
\Psi: K \rightarrow K_{0} \times \cdots \times K_{q-1} .
$$

Theorem 1 (E. Aichinger)

Let $G=A \unlhd_{\alpha} B$ and let $K, K_{0}, \ldots, K_{q-1}, \Psi$ be as defined above. Assume that the homomorphism α is one-to-one and all automorphisms $\alpha(b), b \neq 0$, are fixed-point-free. Then the mapping Ψ is bijective.

Clearly the mapping $\kappa_{i}: K_{i} \rightarrow K_{0}, f \mapsto g$, where $g(x)=f\left(b_{i}+x\right)$, $i=0, \ldots, q-1$, is a bijection.

It follows that under assumptions of Theorem 1, in order to understand the polynomials of G it suffices to know polynomials of G / A and polynomials $f \in P(G)$ such that $f(A) \subseteq A$. In particular, the following formula holds:

$$
|P(G)|=|P(G / A)| \cdot\left|K_{0}\right|^{|B|} .
$$

Structure of the group G

In what follows $G=A \rtimes_{\alpha} B$, where $A=\mathbb{Z}_{p}^{n}, B=\mathbb{Z}_{q}$ with p and q distinct primes and α a non-trivial group homomorphism, that is, $|\alpha(B)|>1$.

Clearly

$$
\alpha(B)=\left\{1, \phi, \phi^{2}, \ldots, \phi^{q-1}\right\}
$$

where $\alpha(1)=\phi \in \operatorname{Aut}(A) \backslash\{1\}$.

Let S be the subring of End A generated by ϕ. Then A has a natural structure of an S-module.

The homomorphism α can be considered as a $\operatorname{GF}(p)$-representation of the group \mathbb{Z}_{q}. Since $(q, p)=1$, the Maschke's Theorem implies that α is completely reducible.

Maschke's Theorem
Let G be a finite group and let F be a field whose characteristic does not divide the order of G. Then every F-representation of G is completely reducible.

So

$$
A=A_{1}+A_{2}+\ldots+A_{k}
$$

where $A_{i}, i=1, \ldots, k$, are irreducible S-modules.

Let ϕ_{i} be the restriction of ϕ to $A_{i}, i=1, \ldots, k$.

Let

$$
A=\tilde{A}_{1}+\tilde{A}_{2}+\ldots+\tilde{A}_{k}
$$

where $\tilde{A}_{i}, i=1, \ldots, k$, are homogeneous components of the S-module A. If there exists i such that $\phi_{i}=1$, then let \tilde{A}_{1} be the sum of all such A_{j} that $\phi_{j}=1$.

In the latter case we put $C=\tilde{A}_{1}$ and $D=\tilde{A}_{2}+\cdots+\tilde{A}_{1}$. Obviously $A=C \oplus D$ and it follows easily from the multiplication law that C is the center of the group G. If there is no i with $\phi_{i}=1$, we put $C=\{0\}$ and $D=A$.

Normal subgroups of the group G

Proposition 1
The group G is direct product of normal subgroups C and $D \rtimes B$. Every normal subgroup of G is the sum of two normal subgroups of G, one contained in C and the other in $D \rtimes B$.

The direct product $C \times(D \rtimes B)$ has no skew congruences.

Polynomial functions on the group G

From Proposition 1 we have that the mapping

$$
\chi: P(G) \rightarrow P(C) \times P(D \rtimes B), \chi(p)=\left(\left.p\right|_{\left.c,\left.p\right|_{D \rtimes B}\right)}\right.
$$

is one-to-one. In fact, given $x=y+z \in G$ where $x \in C$, $y \in D \rtimes B$, we have

$$
p(x)=\left.p\right|_{C}(y)+\left.p\right|_{D \rtimes B}(z) .
$$

Due to the result of Kaarli and Mayr [1], Proposition 1 also implies that χ is surjective. Hence the problem of characterization of polynomials of G reduces to the same problem for groups C and $D \rtimes B$.
[1] K. Kaarli, P. Mayr, Polynomial functions on subdirect products, Monatsh. Math. 159 (2010), 341-359.

Since for the abelian group C the problem is trivial, we have to deal only with group $D \rtimes B$. In this situation Theorem 1 applies.

It follows that in order to describe polynomials of G one has to describe polynomials of $P(G / A)$ and the polynomials of G that map A to A. The first problem is trivial because $G / A \simeq \mathbb{Z}_{q}$ and polynomials of \mathbb{Z}_{q} have the form $f(x)=k x+u$ with $k, u \in \mathbb{Z}_{q}$. In particular, $|P(G / A)|=q^{2}$.

It remains to describe the polynomials of G that map A to A. As above, let $K_{0}=\left\{\left.p\right|_{A} \mid p \in P(G), p(A) \subseteq A\right\}$.

Lemma 1
The set K_{0} consists of all functions $f: A \rightarrow A$ of the form $f(x)=s(x)+a$ where $s \in S, a \in A$. In particular,

$$
\left|K_{0}\right|=|S| \cdot|A| .
$$

It turns out that S is direct sum of Galois fields and these direct summands S_{j} are in one-to-one correspondence with the homogenous components $\tilde{A}_{j}, j=1, \ldots, l$. Moreover, $S_{j} \simeq \operatorname{GF}\left(p^{m_{i}}\right)$ where m_{i} is the dimension of any A_{i} over $\operatorname{GF}(p)$ in \tilde{A}_{j}.

Theorem 2
Let $G=A \rtimes_{\alpha} B$ where $A=\mathbb{Z}_{p}^{n}$ and $B=\mathbb{Z}_{q}$ where p and q are distinct primes. Assume that the center of G is trivial (equivalently, $\alpha(1)$ is fixed-point-free). Let S be the subring of $\operatorname{End} A$ generated by $\alpha(1)$ and let A_{1}, \ldots, A_{l} be a complete list of pairwise non-isomorphic irreducible S-submodules of A. Denote $\left|A_{i}\right|=p^{m_{i}}$, $i=1, \ldots, l$. Then

$$
|P(G)|=q^{2} p^{q\left(m_{1}+\cdots+m_{l}+n\right)} .
$$

Example 1

Let $G=A \rtimes B$ where $A=\mathbb{Z}_{5}^{3}, B=\mathbb{Z}_{2}$, and let

$$
\phi=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Then $G=C \times(D \rtimes B)$ where $C=\mathbb{Z}_{5}^{2}$ is the center of the group
$G, D=\mathbb{Z}_{5},\left.\phi\right|_{C}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and $\left.\phi\right|_{D}=(4)$ is fixed-point-free.
Each polynomial function p on G is of the form

$$
p(x)=\left.p\right|_{C}(y)+\left.p\right|_{D \rtimes B}(z), x=y+z \in G, y \in C, z \in D \rtimes B .
$$

Since D is a S-module, $S \cong \mathrm{GF}(5)$, we get using Theorem 2 that

$$
|P(G)|=|P(C)||P(D \rtimes B)|=5^{3} \cdot 2^{2} \cdot 5^{2(1+3)}=2^{2} \cdot 5^{11}
$$

Example 2

Let $G=A \rtimes B$ where $A=\mathbb{Z}_{5}^{3}, B=\mathbb{Z}_{2}$, and let

$$
\phi=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Then $G=C \times(D \rtimes B)$ where $C=\mathbb{Z}_{5}$ is the center of the group $G, D=\mathbb{Z}_{5}^{2},\left.\phi\right|_{C}=(1),\left.\phi\right|_{D}=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$ is fixed-point-free. Each polynomial function p on G is of the form $p(x)=\left.p\right|_{C}(y)+\left.p\right|_{D \rtimes B}(z), x=y+z \in G, y \in C, z \in D \rtimes B$. Since D is a $\left(S_{1} \times S_{2}\right)$-module, $S \cong S_{1} \times S_{2}, S_{1} \cong \mathrm{GF}(5)$, $S_{2} \cong \mathrm{GF}(5)$, we get using Theorem 2 that

$$
|P(G)|=|P(C)||P(D \rtimes B)|=5^{2} \cdot 2^{2} \cdot 5^{2(1+1+3)}=2^{2} \cdot 5^{12}
$$

Example 3 (There's a mistake in it)

Let $G=A \rtimes B$ where $A=\mathbb{Z}_{7}^{3}, B=\mathbb{Z}_{3}$, and let

$$
\phi=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 2 \\
0 & 2 \cdot 2 & 3
\end{array}\right) .
$$

Since the characteristic polynomial of ϕ is \ldots, S is direct sum $S_{1} \times S_{2}$ where $S_{1} \cong \mathrm{GF}(7), S_{2} \cong \mathrm{GF}\left(7^{2}\right)$. So the center of G is trivial and ϕ is fixed-point-free. Using Theorem 2 we get that

$$
|P(G)|=3^{2} \cdot 7^{3(1+2+3)}=3^{2} \cdot 7^{18}
$$

Example 4

Let $G=A \rtimes B$ where $A=\mathbb{Z}_{23}^{3}, B=\mathbb{Z}_{7}$, and let

$$
\phi=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 14 \\
0 & 1 & 13
\end{array}\right)
$$

Since the characteristic polynomial of ϕ is $x^{3}+10 x^{2}+9 x+22$, i.e. irreducible cubic, A is simple S-module and $S \cong \operatorname{GF}\left(23^{3}\right)$. So the center of G is trivial and ϕ is fixed-point-free. Using Theorem 2 we get that

$$
|P(G)|=7^{2} \cdot 23^{7(3+3)}=7^{2} \cdot 23^{42}
$$

Thank you!

