Group actions and functions

Galois closed groups 0000000 Problems and references

Galois connections between group actions and functions – some results and problems

Reinhard Pöschel (joint work with E. Friese, Rostock University, Germany).

Institut für Algebra Technische Universität Dresden

AAA83 + CYA , Novi Sad March 15–18, 2012

R. Pöschel, Galois connections between group actions and functions – some results and problems (1/20)

Group actions and functions

Galois closed groups

Problems and references 000

Galois connections

A Galois connection between group actions and functions

Galois closed groups

Problems and references

R. Pöschel, Galois connections between group actions and functions – some results and problems (2/20)

Galois closed groups 0000000 Problems and references

Definition

The Galois connection induced by a binary relation

 $R \subseteq G \times M$

is given by the pair of mappings

$$arphi : \mathfrak{P}(G) o \mathfrak{P}(M) : X \mapsto X^R := \{m \in M \mid \forall g \in X : gRm\}$$

 $\psi : \mathfrak{P}(M) o \mathfrak{P}(G) : Y \mapsto Y^R := \{g \in G \mid \forall m \in Y : gRm\}$

Galois closures $X = (X^R)^R$, $Y = (Y^R)^R$

A Galois connection $(arphi,\psi)$ is characterizable by the property

 $\forall X \subseteq G, \ Y \subseteq M : Y \subseteq \varphi(X) \iff \psi(Y) \supseteq X$

In Formal Concept Analysis (FCA)(*Ganter/Wille*): G: objects (*G*egenstände), *M*: attributes (*M*erkmale), *gRm*: object *g* has attribute *m*

R. Pöschel, Galois connections between group actions and functions – some results and problems (3/20)

Galois closed groups 0000000 Problems and references

Definition

The Galois connection induced by a binary relation

 $R \subseteq G \times M$

is given by the pair of mappings

$$arphi : \mathfrak{P}(G) o \mathfrak{P}(M) : X \mapsto X^R := \{m \in M \mid \forall g \in X : gRm\}$$

 $\psi : \mathfrak{P}(M) o \mathfrak{P}(G) : Y \mapsto Y^R := \{g \in G \mid \forall m \in Y : gRm\}$

Galois closures $X = (X^R)^R$, $Y = (Y^R)^R$ A Galois connection (φ, ψ) is characterizable by the property

$$\forall X \subseteq G, \ Y \subseteq M : Y \subseteq \varphi(X) \iff \psi(Y) \supseteq X$$

In Formal Concept Analysis (FCA)(*Ganter/Wille*): G: objects (*G*egenstände), *M*: attributes (*M*erkmale), *gRm*: object *g* has attribute *m*

R. Pöschel, Galois connections between group actions and functions – some results and problems (3/20)

Galois closed groups

Problems and references

Definition

The Galois connection induced by a binary relation

 $R \subseteq G \times M$

is given by the pair of mappings

$$arphi : \mathfrak{P}(G) o \mathfrak{P}(M) : X \mapsto X^R := \{m \in M \mid \forall g \in X : gRm\}$$

 $\psi : \mathfrak{P}(M) o \mathfrak{P}(G) : Y \mapsto Y^R := \{g \in G \mid \forall m \in Y : gRm\}$

Galois closures $X = (X^R)^R$, $Y = (Y^R)^R$ A Galois connection (φ, ψ) is characterizable by the property

$$\forall X \subseteq G, \ Y \subseteq M : Y \subseteq \varphi(X) \iff \psi(Y) \supseteq X$$

In Formal Concept Analysis (FCA)(*Ganter/Wille*): G: objects (*G*egenstände), M: attributes (*M*erkmale), gRm: object g has attribute m

R. Pöschel, Galois connections between group actions and functions – some results and problems (3/20)

Galois connections $\circ \bullet$

Galois closed groups

Problems and references 000

Examples

 $R = \models : A \models s \approx t$ (algebra satisfies term equation) Galois closures:

$$\begin{split} (\mathcal{K}^{\models})^{\models} &= \mathsf{Mod}\,\mathsf{Id}\,\mathcal{K} &\quad \mathsf{equational}\,\,\mathsf{classes} = \mathsf{varieties}\\ (\Sigma^{\models})^{\models} &= \mathsf{Id}\,\mathsf{Mod}\,\Sigma &\quad \mathsf{equational}\,\,\mathsf{theories} \end{split}$$

 $R = \triangleright$: $f \triangleright \varrho$ (function preserves relation) Galois closures:

> $(F^{\triangleright})^{\triangleright} = \operatorname{Pol}\operatorname{Inv} F$ clones $(Q^{\triangleright})^{\triangleright} = \operatorname{Inv}\operatorname{Pol} Q$ relational clones

R. Pöschel, Galois connections between group actions and functions – some results and problems (4/20)

Galois connections $\circ \bullet$

Galois closed groups

Problems and references 000

Examples

 $R = \models : A \models s \approx t$ (algebra satisfies term equation) Galois closures:

$$\begin{split} (\mathcal{K}^{\models})^{\models} &= \mathsf{Mod}\,\mathsf{Id}\,\mathcal{K} & \text{ equational classes} = \mathsf{varieties} \\ (\Sigma^{\models})^{\models} &= \mathsf{Id}\,\mathsf{Mod}\,\Sigma & \text{ equational theories} \end{split}$$

 $R = \triangleright$: $f \triangleright \varrho$ (function preserves relation) Galois closures:

> $(F^{\triangleright})^{\triangleright} = \operatorname{Pol}\operatorname{Inv} F$ clones $(Q^{\triangleright})^{\triangleright} = \operatorname{Inv}\operatorname{Pol} Q$ relational clones

R. Pöschel, Galois connections between group actions and functions – some results and problems (4/20)

Group actions and functions

Galois closed groups

Problems and references 000

Galois connections

A Galois connection between group actions and functions

Galois closed groups

Problems and references

R. Pöschel, Galois connections between group actions and functions – some results and problems (5/20)

Group actions and functions $\bullet \circ \circ$

Galois closed groups 0000000 Problems and references

Group actions

$\Gamma = (\Gamma, \cdot, \varepsilon)$ group (with identity element ε)

 (A, Γ) group action (Γ acts on a set A): mapping

 $A \times \Gamma \to A : (a, \sigma) \mapsto a^{\sigma}$

such that

$$x^{\varepsilon} = x$$
$$(x^{\sigma})^{\tau} = x^{\sigma\tau}$$

for all $x \in A$ and $\sigma, \tau \in \Gamma$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (6/20)

Group actions and functions $\bullet \circ \circ$

Galois closed groups 0000000 Problems and references

Group actions

$$\Gamma = (\Gamma, \cdot, \varepsilon)$$
 group (with identity element ε)

 (A, Γ) group action (Γ acts on a set A): mapping

$$A imes \Gamma o A : (a, \sigma) \mapsto a^{\sigma}$$

such that

$$x^{\varepsilon} = x$$
$$(x^{\sigma})^{\tau} = x^{\sigma\tau}$$

for all $x \in A$ and $\sigma, \tau \in \Gamma$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (6/20)

Group actions and functions $\bullet \circ \circ$

Galois closed groups 0000000 Problems and references

Group actions

$$\Gamma = (\Gamma, \cdot, \varepsilon)$$
 group (with identity element ε)

 (A, Γ) group action (Γ acts on a set A): mapping

$$A \times \Gamma \to A : (a, \sigma) \mapsto a^{\sigma}$$

such that

$$x^{\varepsilon} = x$$
$$(x^{\sigma})^{\tau} = x^{\sigma\tau}$$

for all $x \in A$ and $\sigma, \tau \in \Gamma$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (6/20)

Group actions and functions $_{\bigcirc \odot \odot}$

Galois closed groups

Problems and references

Examples of group actions

- Permutation groups G ≤ Γ := Sym(A) acting on set A: natural action (A, G) on A: a^σ := σ(a) for a ∈ A, σ ∈ G.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathbf{2}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbf{2}\}$ (where $\mathbf{2} := \{0, 1\}$): action: $(x_1, \dots, x_n)^{\sigma} := (x_{\sigma(1)}, \dots, x_{\sigma(n)})$.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathfrak{P}(\underline{n})$: action: $B^{\sigma} := \{\sigma(b) \mid b \in B\}$ for $B \subseteq \underline{n} := \{1, \dots, n\}$.
- Γ := GL_n(2) (general linear group) acting on A := 2ⁿ: action of a regular (n × n)-matrix M ∈ GL_n(2) (over 2-element field GF(2)) on x̄ = (x₁,...,x_n)[⊤] (considered as column vector) by matrix multiplication: x^M := Mx̄, (all computations in GF(2)).

Group actions and functions $_{\bigcirc \odot \odot}$

Galois closed groups 0000000 Problems and references

Examples of group actions

- Permutation groups G ≤ Γ := Sym(A) acting on set A: natural action (A, G) on A: a^σ := σ(a) for a ∈ A, σ ∈ G.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathbf{2}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbf{2}\}$ (where $\mathbf{2} := \{0, 1\}$): action: $(x_1, \dots, x_n)^{\sigma} := (x_{\sigma(1)}, \dots, x_{\sigma(n)})$.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathfrak{P}(\underline{n})$: action: $B^{\sigma} := \{\sigma(b) \mid b \in B\}$ for $B \subseteq \underline{n} := \{1, \dots, n\}$.
- Γ := GL_n(2) (general linear group) acting on A := 2ⁿ: action of a regular (n × n)-matrix M ∈ GL_n(2) (over 2-element field GF(2)) on x̄ = (x₁,...,x_n)[⊤] (considered as column vector) by matrix multiplication: ×^M := Mx̄, (all computations in GF(2)).

Group actions and functions $_{\bigcirc \odot \odot}$

Galois closed groups

Problems and references

Examples of group actions

- Permutation groups G ≤ Γ := Sym(A) acting on set A: natural action (A, G) on A: a^σ := σ(a) for a ∈ A, σ ∈ G.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathbf{2}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbf{2}\}$ (where $\mathbf{2} := \{0, 1\}$): action: $(x_1, \dots, x_n)^{\sigma} := (x_{\sigma(1)}, \dots, x_{\sigma(n)})$.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathfrak{P}(\underline{n})$: action: $B^{\sigma} := \{\sigma(b) \mid b \in B\}$ for $B \subseteq \underline{n} := \{1, \dots, n\}$.

 Γ := GL_n(2) (general linear group) acting on A := 2ⁿ: action of a regular (n × n)-matrix M ∈ GL_n(2) (over 2-element field GF(2)) on x̄ = (x₁,...,x_n)[⊤] (considered as column vector) by matrix multiplication: ×^M := Mx̄, (all computations in GF(2)).

Group actions and functions $_{\bigcirc \odot \odot}$

Galois closed groups

Problems and references

Examples of group actions

- Permutation groups G ≤ Γ := Sym(A) acting on set A: natural action (A, G) on A: a^σ := σ(a) for a ∈ A, σ ∈ G.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathbf{2}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbf{2}\}$ (where $\mathbf{2} := \{0, 1\}$): action: $(x_1, \dots, x_n)^{\sigma} := (x_{\sigma(1)}, \dots, x_{\sigma(n)})$.
- Permutation groups $G \leq \Gamma := \text{Sym}(\underline{n})$ acting on $A := \mathfrak{P}(\underline{n})$: action: $B^{\sigma} := \{\sigma(b) \mid b \in B\}$ for $B \subseteq \underline{n} := \{1, \dots, n\}$.
- Γ := GL_n(2) (general linear group) acting on A := 2ⁿ: action of a regular (n × n)-matrix M ∈ GL_n(2) (over 2-element field GF(2)) on x = (x₁,...,x_n)[⊤] (considered as column vector) by matrix multiplication: x^M := Mx, (all computations in GF(2)).

Group actions and functions $_{\bigcirc \bigcirc \bullet}$

Galois closed groups

Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly, $\sigma \vdash f$ if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

 $F^{\vdash} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{\vdash} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$ Galois closures: $\overline{F} := (F^{\vdash})^{\vdash}, \overline{G} := (G^{\vdash})^{\vdash}.$

Group actions and functions $_{\bigcirc \bigcirc \bullet}$

Galois closed groups 0000000 Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly, $\sigma \vdash f$ if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

 $F^{\vdash} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{\vdash} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$ Galois closures: $\overline{F} := (F^{\vdash})^{\vdash}, \overline{G} := (G^{\vdash})^{\vdash}.$

R. Pöschel, Galois connections between group actions and functions – some results and problems (8/20)

Group actions and functions $_{\bigcirc \bigcirc \bullet}$

Galois closed groups 0000000 Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly, $\sigma \vdash f$ if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

 $F^{+} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{+} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$ Galois closures: $\overline{F} := (F^{+})^{+}, \overline{G} := (G^{+})^{+}.$

Group actions and functions $_{\bigcirc \bigcirc \bullet}$

Galois closed groups 0000000 Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly, $\sigma \vdash f$ if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

 $F^{\vdash} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{\vdash} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$ Galois closures: $\overline{F} := (F^{\vdash})^{\vdash}, \overline{G} := (G^{\vdash})^{\vdash}.$

R. Pöschel, Galois connections between group actions and functions – some results and problems (8/20)

Group actions and functions $_{\bigcirc \bigcirc \bullet}$

Galois closed groups 0000000 Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly, $\sigma \vdash f$ if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

 $F^{\vdash} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{\vdash} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$ Galois closures: $\overline{F} := (F^{\vdash})^{\vdash}, \overline{G} := (G^{\vdash})^{\vdash}.$

Group actions and functions $\circ \circ \bullet$

Galois closed groups 0000000 Problems and references

The Galois connection induced by \vdash

 (A, Γ) group action, K arbitrary set (e.g. K = 2) \vdash relation between group elements $\sigma \in \Gamma$ and functions $f : A \to K$ Definition

$$\sigma \vdash f : \iff \forall x \in A : f(x^{\sigma}) = f(x).$$

Then $f \in K^A$ is called an invariant for $\sigma \in \Gamma$ and σ is called a symmetry of f.

Clearly,
$$\sigma \vdash f$$
 if and only if $\sigma^{-1} \vdash f$.

Corresponding Galois connection (let $F \subseteq K^A$ and $G \subseteq \Gamma$)

$$F^{\vdash} := \{ \sigma \in \Gamma \mid \forall f \in F : \sigma \vdash f \}, \ G^{\vdash} := \{ f \in K^{A} \mid \forall \sigma \in G : \sigma \vdash f \},$$

Galois closures: $\overline{F} := (F^{\vdash})^{\vdash}, \overline{G} := (G^{\vdash})^{\vdash}.$

R. Pöschel, Galois connections between group actions and functions – some results and problems (8/20)

Group actions and functions

Galois closed groups

Problems and references 000

Galois connections

A Galois connection between group actions and functions

Galois closed groups

Problems and references

R. Pöschel, Galois connections between group actions and functions – some results and problems (9/20)

Problems and references

The problem and preliminary notions easy to check:

Galois closures $\overline{G} = (G^{\vdash})^{\vdash}$ are always subgroups of Γ .

Problem

Given a group action (A, Γ) , characterize the Galois closed subgroups $G = \overline{G}$.

some necessary notions and notation:

For a subgroup $G \leq \Gamma$ let

 $\operatorname{Orb}_A G := \{a^G \mid a \in A\} \text{ (where } a^G := \{a^\sigma \mid \sigma \in G\}\text{)}$

(set of all orbits of G (under the group action)). For $a \in A$ and $B \subseteq A$ let

 $\Gamma_a := \{ \sigma \in \Gamma \mid a^{\sigma} = a \} \quad \text{(stabilizer of } a \text{)}.$

 $\Gamma_B := \{ \sigma \in \Gamma \mid B^{\sigma} = B \} \text{ (set-stabilizer of set } B).$

Problems and references

The problem and preliminary notions

easy to check: Galois closures $\overline{G} = (G^{\vdash})^{\vdash}$ are always subgroups of Γ .

Problem

Given a group action (A, Γ) , characterize the Galois closed subgroups $G = \overline{G}$.

some necessary notions and notation: For a subgroup $G \leq \Gamma$ let

 $\operatorname{Orb}_A G := \{a^G \mid a \in A\} \text{ (where } a^G := \{a^\sigma \mid \sigma \in G\}\text{)}$

(set of all orbits of G (under the group action)). For $a \in A$ and $B \subseteq A$ let

 $\Gamma_a := \{ \sigma \in \Gamma \mid a^{\sigma} = a \} \quad \text{(stabilizer of } a \text{)}.$

 $\Gamma_B := \{ \sigma \in \Gamma \mid B^{\sigma} = B \} \text{ (set-stabilizer of set } B).$

Problems and references

The problem and preliminary notions

easy to check: Galois closures $\overline{G} = (G^{\vdash})^{\vdash}$ are always subgroups of Γ .

Problem

Given a group action (A, Γ) , characterize the Galois closed subgroups $G = \overline{G}$.

some necessary notions and notation:

For a subgroup $G \leq \Gamma$ let

$$\operatorname{Orb}_A G := \{a^G \mid a \in A\} \text{ (where } a^G := \{a^\sigma \mid \sigma \in G\}\text{)}$$

(set of all orbits of G (under the group action)). For $a \in A$ and $B \subseteq A$ let

 $\Gamma_a := \{ \sigma \in \Gamma \mid a^{\sigma} = a \} \quad \text{(stabilizer of } a).$

 $\Gamma_B := \{ \sigma \in \Gamma \mid B^{\sigma} = B \} \text{ (set-stabilizer of set } B).$

Problems and references

The problem and preliminary notions

easy to check: Galois closures $\overline{G} = (G^{\vdash})^{\vdash}$ are always subgroups of Γ .

Problem

Given a group action (A, Γ) , characterize the Galois closed subgroups $G = \overline{G}$.

some necessary notions and notation:

For a subgroup $G \leq \Gamma$ let

$$\operatorname{Orb}_A G := \{a^G \mid a \in A\} \text{ (where } a^G := \{a^\sigma \mid \sigma \in G\}\text{)}$$

(set of all orbits of *G* (under the group action)). For $a \in A$ and $B \subseteq A$ let

$$\Gamma_a := \{ \sigma \in \Gamma \mid a^{\sigma} = a \} \text{ (stabilizer of } a).$$

 $\Gamma_B := \{ \sigma \in \Gamma \mid B^{\sigma} = B \} \quad \text{(set-stabilizer of set } B).$

Group actions and functions

Galois closed groups ○●○○○○○ Problems and references

Characterizing $\sigma \in G$

Lemma

The following conditions are equivalent (for $G \leq \Gamma$, $f \in K^A$): (i) $f \in G^{\vdash}$.

(ii) f is constant on each $B \in \text{Orb } G$,

Proof. Directly follows from $b, b' \in B \in Orb(G) \iff \exists \sigma \in G : b' = b^{\sigma}.$

Group actions and functions

Galois closed groups

Problems and references

Characterization Theorem

Theorem Let (A, Γ) be a group action and $G \leq \Gamma$. Then we have:

$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B, \qquad (*)$$
$$\overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G. \qquad (**)$$

Moreover, the Galois closure \overline{G} is the largest subgroup among all subgroups of Γ with the same orbits (on A) as G.

Remark: For the action $(A, \Gamma) = (2^n, \text{Sym}(\underline{n}))$, (**) was formulated and proved by *E. Horvath, K. Kearnes.*

R. Pöschel, Galois connections between group actions and functions – some results and problems (12/20)

Group actions and functions

Galois closed groups

Problems and references

Characterization Theorem

Theorem Let (A, Γ) be a group action and $G \leq \Gamma$. Then we have:

$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B, \qquad (*)$$
$$\overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G. \qquad (**)$$

Moreover, the Galois closure \overline{G} is the largest subgroup among all subgroups of Γ with the same orbits (on A) as G.

Remark: For the action $(A, \Gamma) = (2^n, \text{Sym}(\underline{n}))$, (**) was formulated and proved by *E. Horvath*, *K. Kearnes*.

R. Pöschel, Galois connections between group actions and functions – some results and problems (12/20)

Group actions and functions

Galois closed groups

Problems and references

Characterization Theorem

Theorem Let (A, Γ) be a group action and $G \leq \Gamma$. Then we have:

$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B, \qquad (*)$$
$$\overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G. \qquad (**)$$

Moreover, the Galois closure \overline{G} is the largest subgroup among all subgroups of Γ with the same orbits (on A) as G.

Remark: For the action $(A, \Gamma) = (2^n, \text{Sym}(\underline{n}))$, (**) was formulated and proved by *E. Horvath*, *K. Kearnes*.

R. Pöschel, Galois connections between group actions and functions – some results and problems (12/20)

Group actions and functions

Galois closed groups

Problems and references

(*) $\overline{G} = \bigcap_{B \in Orb(G)} \Gamma_B = \bigcap_{B \in Orb(G)} \{ \sigma \in \Gamma \mid B^{\sigma} = B \}.$

Proof.

" \supseteq ": Let $\sigma \in \Gamma$ satisfy $B^{\sigma} = B$ for each orbit B. Every $f \in G^{\vdash}$ is constant on each orbit, and, for each $b \in A$, b, b^{σ} belong to the same orbit by assumption, therefore we have $f(b) = f(b^{\sigma})$. Thus $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

"⊆": Let $\sigma \in G$ and $B \in Orb(G)$. We define $f_B : A \to K$ by

$$f_B(a) := egin{cases} 1 & ext{if } a \in B, \ 0 & ext{otherwise}. \end{cases}$$

Clearly, $f_B \in G^{\vdash}$ because it is constant on each orbit. Consequently $\sigma \vdash f_B$, in particular $f(b^{\sigma}) = f(b) = 1$ for each $b \in B$, i.e. $b^{\sigma} \in B$ by definition of f_B . Thus $B^{\sigma} = B$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (13/20)

Group actions and functions

Galois closed groups

Problems and references

Proof of (*)

(*)
$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B = \bigcap_{B \in \operatorname{Orb}(G)} \{ \sigma \in \Gamma \mid B^{\sigma} = B \}.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma$ satisfy $B^{\sigma} = B$ for each orbit B. Every $f \in G^{\vdash}$ is constant on each orbit, and, for each $b \in A$, b, b^{σ} belong to the same orbit by assumption, therefore we have $f(b) = f(b^{\sigma})$. Thus $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

" \subseteq ": Let $\sigma \in \overline{G}$ and $B \in Orb(G)$. We define $f_B : A \to K$ by

 $f_B(a) := egin{cases} 1 & ext{if } a \in B, \ 0 & ext{otherwise}. \end{cases}$

Clearly, $f_B \in G^{\vdash}$ because it is constant on each orbit. Consequently $\sigma \vdash f_B$, in particular $f(b^{\sigma}) = f(b) = 1$ for each $b \in B$, i.e. $b^{\sigma} \in B$ by definition of f_B . Thus $B^{\sigma} = B$.

Group actions and functions

Galois closed groups

Problems and references

Proof of (*)

(*)
$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B = \bigcap_{B \in \operatorname{Orb}(G)} \{ \sigma \in \Gamma \mid B^{\sigma} = B \}.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma$ satisfy $B^{\sigma} = B$ for each orbit B. Every $f \in G^{\vdash}$ is constant on each orbit, and, for each $b \in A$, b, b^{σ} belong to the same orbit by assumption, therefore we have $f(b) = f(b^{\sigma})$. Thus $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$. " \subset ": Let $\sigma \in \overline{G}$ and $B \in Orb(G)$. We define $f_B : A \to K$ by

$$f_B(a) := egin{cases} 1 & ext{if } a \in B, \ 0 & ext{otherwise}. \end{cases}$$

Clearly, $f_B \in G^{\vdash}$ because it is constant on each orbit. Consequently $\sigma \vdash f_B$, in particular $f(b^{\sigma}) = f(b) = 1$ for each $b \in B$, i.e. $b^{\sigma} \in B$ by definition of f_B . Thus $B^{\sigma} = B$.

Group actions and functions

Galois closed groups

Problems and references

Proof of (*)

(*)
$$\overline{G} = \bigcap_{B \in \operatorname{Orb}(G)} \Gamma_B = \bigcap_{B \in \operatorname{Orb}(G)} \{ \sigma \in \Gamma \mid B^{\sigma} = B \}.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma$ satisfy $B^{\sigma} = B$ for each orbit B. Every $f \in G^{\vdash}$ is constant on each orbit, and, for each $b \in A$, b, b^{σ} belong to the same orbit by assumption, therefore we have $f(b) = f(b^{\sigma})$. Thus $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

"⊆": Let $\sigma \in \overline{G}$ and $B \in Orb(G)$. We define $f_B : A \to K$ by

$$f_B(a) := egin{cases} 1 & ext{if } a \in B, \ 0 & ext{otherwise}. \end{cases}$$

Clearly, $f_B \in G^{\vdash}$ because it is constant on each orbit. Consequently $\sigma \vdash f_B$, in particular $f(b^{\sigma}) = f(b) = 1$ for each $b \in B$, i.e. $b^{\sigma} \in B$ by definition of f_B . Thus $B^{\sigma} = B$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (13/20)

Group actions and functions

Galois closed groups

Problems and references

Proof of (**)

$$(**) \qquad \overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma_a \cdot G$ for all $a \in A$. Then, for each $a \in A$, there exists $\tau_a \in \Gamma_a$ and $\pi_a \in G$ such that $\sigma = \tau_a \pi_a$. Let $f \in G^{\vdash}$, then $\pi_a \vdash f$, thus $f(a^{\pi_a}) = f(a)$. Because $a^{\tau_a} = a$ we get $f(a^{\sigma}) = f(a^{\tau_a \pi_a}) = f(a^{\pi_a}) = f(a)$, showing that $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

" \subseteq ": Let $\sigma \in \overline{G}$, $a \in A$ and $B = a^G \in \operatorname{Orb}(G)$. By (*) we have $a^{\sigma} \in B = a^G$. From the last equation we see that there exists a $\pi \in G$ with $a^{\sigma} = a^{\pi}$. Hence $a^{\sigma \pi^{-1}} = a$, and we have $\sigma = (\sigma \pi^{-1})\pi \in \Gamma_a \cdot G$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (14/20)

Group actions and functions

Galois closed groups

Problems and references

Proof of (**)

$$(**) \qquad \overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma_a \cdot G$ for all $a \in A$. Then, for each $a \in A$, there exists $\tau_a \in \Gamma_a$ and $\pi_a \in G$ such that $\sigma = \tau_a \pi_a$. Let $f \in G^{\vdash}$, then $\pi_a \vdash f$, thus $f(a^{\pi_a}) = f(a)$. Because $a^{\tau_a} = a$ we get $f(a^{\sigma}) = f(a^{\tau_a \pi_a}) = f(a^{\pi_a}) = f(a)$, showing that $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

" \subseteq ": Let $\sigma \in \overline{G}$, $a \in A$ and $B = a^G \in \operatorname{Orb}(G)$. By (*) we have $a^{\sigma} \in B = a^G$. From the last equation we see that there exists a $\pi \in G$ with $a^{\sigma} = a^{\pi}$. Hence $a^{\sigma \pi^{-1}} = a$, and we have $\sigma = (\sigma \pi^{-1})\pi \in \Gamma_a \cdot G$.

Group actions and functions

Galois closed groups

Problems and references

Proof of (**)

$$(^{**}) \qquad \overline{G} = \bigcap_{a \in A} \Gamma_a \cdot G.$$

Proof.

" \supseteq ": Let $\sigma \in \Gamma_a \cdot G$ for all $a \in A$. Then, for each $a \in A$, there exists $\tau_a \in \Gamma_a$ and $\pi_a \in G$ such that $\sigma = \tau_a \pi_a$. Let $f \in G^{\vdash}$, then $\pi_a \vdash f$, thus $f(a^{\pi_a}) = f(a)$. Because $a^{\tau_a} = a$ we get $f(a^{\sigma}) = f(a^{\tau_a \pi_a}) = f(a^{\pi_a}) = f(a)$, showing that $\sigma \vdash f$, consequently $\sigma \in (G^{\vdash})^{\vdash} = \overline{G}$.

" \subseteq ": Let $\sigma \in \overline{G}$, $a \in A$ and $B = a^G \in \operatorname{Orb}(G)$. By (*) we have $a^{\sigma} \in B = a^G$. From the last equation we see that there exists a $\pi \in G$ with $a^{\sigma} = a^{\pi}$. Hence $a^{\sigma \pi^{-1}} = a$, and we have $\sigma = (\sigma \pi^{-1})\pi \in \Gamma_a \cdot G$.

R. Pöschel, Galois connections between group actions and functions – some results and problems (14/20)

Problems and references

Characterization for the natural action (A, Sym(A))

Proposition

Let $\Gamma = \text{Sym}(A)$ be the full symmetric group with its natural action on A. The Galois closed subgroups G of S_A are exactly those of the form

$G = \operatorname{Sym}_A(B_1) \cdot \ldots \cdot \operatorname{Sym}_A(B_r) \cong \operatorname{Sym}(B_1) \times \ldots \times \operatorname{Sym}(B_r),$

where
$$\{B_1, \ldots, B_r\}$$
 is a partition of A.
Then $Orb(G) = \{B_1, \ldots, B_r\}.$

For $B \subseteq A$, here $Sym_A(B)$ denotes the image of the natural embedding $\sigma \mapsto \hat{\sigma}$ of Sym(B) into Sym(A) where, for $a \in A$,

$$a^{\hat{\sigma}} := egin{cases} a^{\sigma} & ext{if } a \in B, \ a & ext{otherwise.} \end{cases}$$

Problems and references

Characterization for the natural action (A, Sym(A))

Proposition

Let $\Gamma = \text{Sym}(A)$ be the full symmetric group with its natural action on A. The Galois closed subgroups G of S_A are exactly those of the form

 $G = \operatorname{Sym}_{A}(B_{1}) \cdot \ldots \cdot \operatorname{Sym}_{A}(B_{r}) \cong \operatorname{Sym}(B_{1}) \times \ldots \times \operatorname{Sym}(B_{r}),$

where $\{B_1, \ldots, B_r\}$ is a partition of A. Then $Orb(G) = \{B_1, \ldots, B_r\}$.

For $B \subseteq A$, here $Sym_A(B)$ denotes the image of the natural embedding $\sigma \mapsto \hat{\sigma}$ of Sym(B) into Sym(A) where, for $a \in A$,

$$a^{\hat{\sigma}} := egin{cases} a^{\sigma} & ext{if } a \in B, \ a & ext{otherwise}. \end{cases}$$

R. Pöschel, Galois connections between group actions and functions – some results and problems (15/20)

Problems and references

Characterization for the natural action (A, Sym(A))

Proposition

Let $\Gamma = \text{Sym}(A)$ be the full symmetric group with its natural action on A. The Galois closed subgroups G of S_A are exactly those of the form

$$G = \operatorname{Sym}_{\mathcal{A}}(B_1) \cdot \ldots \cdot \operatorname{Sym}_{\mathcal{A}}(B_r) \cong \operatorname{Sym}(B_1) \times \ldots \times \operatorname{Sym}(B_r),$$

where
$$\{B_1, \ldots, B_r\}$$
 is a partition of A.
Then $Orb(G) = \{B_1, \ldots, B_r\}.$

For $B \subseteq A$, here $\text{Sym}_A(B)$ denotes the image of the natural embedding $\sigma \mapsto \hat{\sigma}$ of Sym(B) into Sym(A) where, for $a \in A$,

$$a^{\hat{\sigma}} := egin{cases} a^{\sigma} & ext{if } a \in B, \ a & ext{otherwise}. \end{cases}$$

R. Pöschel, Galois connections between group actions and functions – some results and problems (15/20)

Characterization for the natural action (A, Sym(A))

Proposition

Let $\Gamma = \text{Sym}(A)$ be the full symmetric group with its natural action on A. The Galois closed subgroups G of S_A are exactly those of the form

$$G = \operatorname{Sym}_{\mathcal{A}}(B_1) \cdot \ldots \cdot \operatorname{Sym}_{\mathcal{A}}(B_r) \cong \operatorname{Sym}(B_1) \times \ldots \times \operatorname{Sym}(B_r),$$

where
$$\{B_1, \ldots, B_r\}$$
 is a partition of A.
Then $Orb(G) = \{B_1, \ldots, B_r\}.$

For $B \subseteq A$, here $\text{Sym}_A(B)$ denotes the image of the natural embedding $\sigma \mapsto \hat{\sigma}$ of Sym(B) into Sym(A) where, for $a \in A$,

$$a^{\hat{\sigma}} := egin{cases} a^{\sigma} & ext{if } a \in B, \ a & ext{otherwise.} \end{cases}$$

R. Pöschel, Galois connections between group actions and functions – some results and problems (15/20)

Group actions and functions

Galois closed groups

Problems and references

Generalization to faithful actions

Proposition

Let Γ be a faithful action on A. The Galois closed subgroups G of Γ are exactly those of the form

$$\hat{G} = \operatorname{Sym}_{A}(B_{1}) \cdot \ldots \cdot \operatorname{Sym}_{A}(B_{r}) \cap \hat{\Gamma},$$

where $\{B_1, \ldots, B_r\}$ is a partition of A. Here $\hat{\Gamma}$ (and \hat{G}) denotes the natural permutation representation of the group action:

$$\hat{\mathsf{\Gamma}} := \{\hat{\sigma} \mid \sigma \in \mathsf{\Gamma}\} \text{ where } \hat{\sigma} : \mathsf{A} \to \mathsf{A} : x \mapsto x^{\sigma}.$$

(faithful action $\implies \Gamma \cong \hat{\Gamma}$)

R. Pöschel, Galois connections between group actions and functions – some results and problems (16/20)

Group actions and functions

Galois closed groups 0000000 Problems and references

Galois connections

A Galois connection between group actions and functions

Galois closed groups

Problems and references

R. Pöschel, Galois connections between group actions and functions – some results and problems (17/20)

Group actions and functions

Galois closed groups 0000000 Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}⁺ for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

R. Pöschel, Galois connections between group actions and functions – some results and problems (18/20)

Group actions and functions

Galois closed groups 0000000 Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

Group actions and functions

Galois closed groups

Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

R. Pöschel, Galois connections between group actions and functions – some results and problems (18/20)

Group actions and functions

Galois closed groups

Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

R. Pöschel, Galois connections between group actions and functions – some results and problems (18/20)

Group actions and functions

Galois closed groups

Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense:

groups \rightarrow semigroups ? functions \rightarrow other objects ?

Group actions and functions

Galois closed groups

Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

R. Pöschel, Galois connections between group actions and functions – some results and problems (18/20)

Group actions and functions

Galois closed groups

Problems and references •00

Some Problems

- Find the Galois closed subgroups for concrete actions (A, Γ). Characterize the Galois closed groups of the form G = {f}[⊢] for a single function f : A → K (e.g. with K = 2). For finite actions: every closed G is of this form if the size of K is chosen large enough (e.g. K = 2^A).
- The other side of the Galois connection:
 Find and characterize the Galois closed sets F = F ⊆ K^A of functions f : A → K.
- Which generalizations make sense: groups → semigroups ? functions → other objects ?

Group actions and functions

Galois closed groups

Problems and references $0 \bullet 0$

References

For the action (2ⁿ, Sym(<u>n</u>)): A. Kisielewicz, Symmetry groups of Boolean functions and constructions of permutation groups. J. of Algebra 1998, (1998), 379–403.

For the action $(2^n, GL_n(2))$: *W. Xiao, Linear symmetries of Boolean functions.* Discrete Applied Mathematics 149, (2005), 192–199.

some further results for the action (2ⁿ, Sym(<u>n</u>)) by E. Horváth, G. Makay, S. Radeleczki, T. Waldhauser E. Lekhtonen E. Friese, R. Pöschel

R. Pöschel, Galois connections between group actions and functions – some results and problems (19/20)

Group actions and functions

Galois closed groups 0000000

Problems and references

R. Pöschel, Galois connections between group actions and functions – some results and problems (20/20)