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Definition
The Galois connection induced by a binary relation

R ⊆ G ×M

is given by the pair of mappings

ϕ : P(G )→ P(M) : X 7→ XR := {m ∈ M | ∀g ∈ X : gRm}
ψ : P(M)→ P(G ) : Y 7→ Y R := {g ∈ G | ∀m ∈ Y : gRm}

Galois closures X = (XR)R , Y = (Y R)R

A Galois connection (ϕ,ψ) is characterizable by the property

∀X ⊆ G , Y ⊆ M : Y ⊆ ϕ(X ) ⇐⇒ ψ(Y ) ⊇ X

In Formal Concept Analysis (FCA)(Ganter/Wille):
G : objects (Gegenstände), M: attributes (Merkmale),

gRm: object g has attribute m

R. Pöschel, Galois connections between group actions and functions – some results and problems (3/20)
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Examples

R = |= : A |= s ≈ t (algebra satisfies term equation)
Galois closures:

(K|=)|= = Mod IdK equational classes = varieties

(Σ|=)|= = Id Mod Σ equational theories

R = . : f . % (function preserves relation)
Galois closures:

(F .). = Pol Inv F clones

(Q.). = Inv Pol Q relational clones

R. Pöschel, Galois connections between group actions and functions – some results and problems (4/20)
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Group actions

Γ = (Γ, ·, ε) group (with identity element ε)

(A, Γ) group action (Γ acts on a set A): mapping

A× Γ→ A : (a, σ) 7→ aσ

such that

xε = x

(xσ)τ = xστ

for all x ∈ A and σ, τ ∈ Γ.

R. Pöschel, Galois connections between group actions and functions – some results and problems (6/20)
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R. Pöschel, Galois connections between group actions and functions – some results and problems (6/20)



Galois connections Group actions and functions Galois closed groups Problems and references

Examples of group actions

• Permutation groups G ≤ Γ := Sym(A) acting on set A:
natural action (A,G ) on A: aσ := σ(a) for a ∈ A, σ ∈ G .

• Permutation groups G ≤ Γ := Sym(n) acting on
A := 2n = {(x1, . . . , xn) | x1, . . . , xn ∈ 2} (where 2 := {0, 1}):
action: (x1, . . . , xn)σ := (xσ(1), . . . , xσ(n)).

• Permutation groups G ≤ Γ := Sym(n) acting on A := P(n):
action: Bσ := {σ(b) | b ∈ B} for B ⊆ n := {1, . . . , n}.

• Γ := GLn(2) (general linear group) acting on A := 2n:
action of a regular (n × n)-matrix M ∈ GLn(2) (over
2-element field GF(2)) on ~x = (x1, . . . , xn)> (considered as
column vector) by matrix multiplication: xM := M~x ,
(all computations in GF(2)).

R. Pöschel, Galois connections between group actions and functions – some results and problems (7/20)
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The Galois connection induced by `
(A, Γ) group action, K arbitrary set (e.g. K = 2)
` relation between group elements σ ∈ Γ and functions f : A→ K

Definition

σ ` f :⇐⇒ ∀x ∈ A : f (xσ) = f (x).

Then f ∈ KA is called an invariant for σ ∈ Γ
and σ is called a symmetry of f .

A
action−−−−→
x 7→xσ

A∥∥∥ f

y
A

f−−−−→ K

Clearly, σ ` f if and only if σ−1 ` f .

Corresponding Galois connection (let F ⊆ KA and G ⊆ Γ)

F` := {σ ∈ Γ | ∀f ∈ F : σ ` f }, G` := {f ∈ KA | ∀σ ∈ G : σ ` f },
Galois closures: F := (F`)`,G := (G`)`.

R. Pöschel, Galois connections between group actions and functions – some results and problems (8/20)
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R. Pöschel, Galois connections between group actions and functions – some results and problems (8/20)



Galois connections Group actions and functions Galois closed groups Problems and references

The Galois connection induced by `
(A, Γ) group action, K arbitrary set (e.g. K = 2)
` relation between group elements σ ∈ Γ and functions f : A→ K

Definition

σ ` f :⇐⇒ ∀x ∈ A : f (xσ) = f (x).

Then f ∈ KA is called an invariant for σ ∈ Γ
and σ is called a symmetry of f .

A
action−−−−→
x 7→xσ

A∥∥∥ f

y
A

f−−−−→ K

Clearly, σ ` f if and only if σ−1 ` f .

Corresponding Galois connection (let F ⊆ KA and G ⊆ Γ)

F` := {σ ∈ Γ | ∀f ∈ F : σ ` f }, G` := {f ∈ KA | ∀σ ∈ G : σ ` f },
Galois closures: F := (F`)`,G := (G`)`.
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The problem and preliminary notions
easy to check:
Galois closures G = (G`)` are always subgroups of Γ.

Problem
Given a group action (A, Γ), characterize the Galois closed
subgroups G = G .

some necessary notions and notation:
For a subgroup G ≤ Γ let

OrbA G := {aG | a ∈ A} (where aG := {aσ | σ ∈ G})

(set of all orbits of G (under the group action)).
For a ∈ A and B ⊆ A let

Γa := {σ ∈ Γ | aσ = a} (stabilizer of a).

ΓB := {σ ∈ Γ | Bσ = B} (set-stabilizer of set B).

R. Pöschel, Galois connections between group actions and functions – some results and problems (10/20)
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Characterizing σ ∈ G

Lemma
The following conditions are equivalent (for G ≤ Γ, f ∈ KA):

(i) f ∈ G`,

(ii) f is constant on each B ∈ Orb G ,

Proof.
Directly follows from
b, b′ ∈ B ∈ Orb(G ) ⇐⇒ ∃σ ∈ G : b′ = bσ.

R. Pöschel, Galois connections between group actions and functions – some results and problems (11/20)
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Characterization Theorem

Theorem
Let (A, Γ) be a group action and G ≤ Γ. Then we have:

G =
⋂

B∈Orb(G)

ΓB , (*)

G =
⋂
a∈A

Γa · G . (**)

Moreover, the Galois closure G is the largest subgroup among all
subgroups of Γ with the same orbits (on A) as G.

Remark: For the action (A, Γ) = (2n,Sym(n)),
(**) was formulated and proved by E. Horvath, K. Kearnes.

R. Pöschel, Galois connections between group actions and functions – some results and problems (12/20)
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Proof of (*)

(*) G =
⋂

B∈Orb(G)

ΓB =
⋂

B∈Orb(G)

{σ ∈ Γ | Bσ = B}.

Proof.
“⊇”: Let σ ∈ Γ satisfy Bσ = B for each orbit B. Every f ∈ G` is
constant on each orbit, and, for each b ∈ A, b, bσ belong to the
same orbit by assumption, therefore we have f (b) = f (bσ). Thus
σ ` f , consequently σ ∈ (G`)` = G .
“⊆”: Let σ ∈ G and B ∈ Orb(G ). We define fB : A→ K by

fB(a) :=

{
1 if a ∈ B,

0 otherwise.

Clearly, fB ∈ G` because it is constant on each orbit.
Consequently σ ` fB , in particular f (bσ) = f (b) = 1 for each
b ∈ B, i.e. bσ ∈ B by definition of fB . Thus Bσ = B.

R. Pöschel, Galois connections between group actions and functions – some results and problems (13/20)
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Proof of (**)

(**) G =
⋂
a∈A

Γa · G .

Proof.
“⊇”: Let σ ∈ Γa · G for all a ∈ A. Then, for each a ∈ A, there
exists τa ∈ Γa and πa ∈ G such that σ = τaπa. Let f ∈ G`, then
πa ` f , thus f (aπa) = f (a). Because aτa = a we get
f (aσ) = f (aτaπa) = f (aπa) = f (a), showing that σ ` f ,
consequently σ ∈ (G`)` = G .

“⊆”: Let σ ∈ G , a ∈ A and B = aG ∈ Orb(G ). By (*) we have
aσ ∈ B = aG . From the last equation we see that there exists a
π ∈ G with aσ = aπ. Hence aσπ

−1
= a, and we have

σ = (σπ−1)π ∈ Γa · G .

R. Pöschel, Galois connections between group actions and functions – some results and problems (14/20)
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Characterization for the natural action (A, Sym(A))

Proposition

Let Γ = Sym(A) be the full symmetric group with its natural
action on A. The Galois closed subgroups G of SA are exactly
those of the form

G = SymA(B1) · . . . · SymA(Br ) ∼= Sym(B1)× . . .× Sym(Br ),

where {B1, . . . ,Br} is a partition of A.
Then Orb(G ) = {B1, . . . ,Br}.

For B ⊆ A, here SymA(B) denotes the image of the natural
embedding σ 7→ σ̂ of Sym(B) into Sym(A) where, for a ∈ A,

aσ̂ :=

{
aσ if a ∈ B,

a otherwise.
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Generalization to faithful actions

Proposition

Let Γ be a faithful action on A. The Galois closed subgroups G of
Γ are exactly those of the form

Ĝ = SymA(B1) · . . . · SymA(Br ) ∩ Γ̂,

where {B1, . . . ,Br} is a partition of A.

Here Γ̂ (and Ĝ ) denotes the natural permutation representation of
the group action:

Γ̂ := {σ̂ | σ ∈ Γ} where σ̂ : A→ A : x 7→ xσ.

(faithful action =⇒ Γ ∼= Γ̂)
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Some Problems

• Find the Galois closed subgroups for concrete actions (A, Γ) .
Characterize the Galois closed groups of the form G = {f }`
for a single function f : A→ K (e.g. with K = 2).
For finite actions: every closed G is of this form if the size of K is
chosen large enough (e.g. K = 2A).

• The other side of the Galois connection:
Find and characterize the Galois closed sets F = F ⊆ KA of
functions f : A→ K .

• Which generalizations make sense:
groups → semigroups ?
functions → other objects ?
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R. Pöschel, Galois connections between group actions and functions – some results and problems (18/20)



Galois connections Group actions and functions Galois closed groups Problems and references

References

For the action (2n, Sym(n)):
A. Kisielewicz, Symmetry groups of Boolean functions and
constructions of permutation groups. J. of Algebra 1998,
(1998), 379–403.

For the action (2n,GLn(2)):
W. Xiao, Linear symmetries of Boolean functions. Discrete
Applied Mathematics 149, (2005), 192–199.

some further results for the action (2n,Sym(n)) by
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