Universal homogeneous constraint structures and the hom-equivalence classes of weakly oligomorphic structures

Christian Pech
Maja Pech

17.03.2012
Definition
A countable relational structure A is called weakly oligomorphic if $\text{End}(A)$ is oligomorphic. I.e., $\text{End}(A)$ has of every arity only finitely many invariant relations on A.

Examples for weakly oligomorphic structures
- finite structures,
- ω-categorical structures,
- retracts of weakly oligomorphic structures,
- reducts of homomorphism homogeneous structures over a finite signature
Motivation

Define $\text{CSP}(A) := \{B \mid B \text{ finite, } B \to A\}$

Theorem

If B is weakly oligomorphic and A is a countable structure, then the following are equivalent:

1. $A \to B$,
2. $\text{Th}^+ \exists_1(A) \subseteq \text{Th}^+ \exists_1(B)$,
3. $\text{Age}(A) \to \text{Age}(B)$,
4. $\text{CSP}(A) \subseteq \text{CSP}(B)$.

Theorem (Mašulović, MP ’11)

If A is weakly oligomorphic and B is countable and $B \models \text{Th}(A)$, then B is weakly oligomorphic.

Corollary

Let T be the first order theory of a weakly oligomorphic structure. Then all countable models of T are homomorphism-equivalent.
Hom-equivalence classes

Definition
Let A be a countable relational structure. Then the hom-equivalence class $E(A)$ of A is the class of all countable structures B such that $A \rightarrow B$ and $B \rightarrow A$.

We equip $E(A)$ with a quasiorder:
For $B, C \in E(A)$ we write $B \hookrightarrow C$ whenever there exists an embedding from B into C.

We study the structure of $(E(A), \hookrightarrow)$,
where A is a weakly oligomorphic structure.
Our first steps are to find (nice) smallest and greatest elements in $E(A)$.
Smallest elements

Theorem
Every weakly oligomorphic relational structure T is homomorphism-equivalent to a finite or \aleph_0-categorical substructure C.

Theorem (Bodirsky ’07)
Every \aleph_0-categorical relational structure T is homomorphism-equivalent to a model-complete core C, which is unique up to isomorphism, and ω-categorical or finite.

Corollary
For a weakly oligomorphic structure A the class $\mathcal{E}(A)$ has (up to isomorphism) a unique model-complete smallest element.
Greatest elements

Theorem
Let R be a countable relational signature, and let T be a countable R-structure. Then $E(T)$ has a largest element. Moreover, if R is finite and T is weakly oligomorphic, then $E(T)$ has an ω-categorical element.

Theorem (Saracino ’73)
Let T be an \aleph_0-categorical theory with no finite models. Then T has a model-companion $T’$. Moreover, $T’$ is \aleph_0-categorical, too.

Corollary
If A is a weakly oligomorphic structure over a finite signature, then $E(A)$ has (up to isomorphism) a unique model-complete, ω-categorical largest element.

Observation
The age of a largest element in $E(A)$ is at most $\text{CSP}(A)$.
Strict Fraïssé-classes
If \(\mathcal{C} \) is an age, then \(\overline{\mathcal{C}} := \{ A \mid A \text{ countable, } \text{Age}(A) \subseteq \mathcal{C} \} \).

Definition (Dolinka)
A Fraïssé-class \(\mathcal{C} \) of relational structures is called strict Fraïssé-class if every pair of morphisms in \((\mathcal{C}, \hookrightarrow) \) with the same domain has a finite pushout in \((\overline{\mathcal{C}}, \rightarrow) \).

Observation
Note that these pushouts will always be amalgams. Thus the strict amalgamation property postulates canonical amalgams.

Examples for strict Fraïssé-classes
- free amalgamation classes,
- the class of finite partial orders.

Definition
A sub-Fraïssé-class \(\mathcal{C} \) of a strict Fraïssé-class \(\mathcal{U} \) is called free in \(\mathcal{U} \) if it is closed with respect to canonical amalgams.
Universal structures

Theorem
Let \mathcal{U} be a strict Fraïssé-class of relational structures, and let \mathcal{C} be a Fraïssé-class that is free in \mathcal{U}. Let $T \in \overline{\mathcal{U}}$. Then

1. $\overline{\mathcal{C}} \cap \text{CSP}(T)$ has a universal element $U_{\mathcal{C}, T}$,

2. if the Fraïssé-limit of \mathcal{C} and T each have an oligomorphic automorphism group (i.e. each is finite or ω-categorical), then $\overline{\mathcal{C}} \cap \text{CSP}(T)$ has a universal element $U_{\mathcal{C}, T}$ that is finite or ω-categorical.

If $T \in \overline{\mathcal{C}}$, then $U_{\mathcal{C}, T}$ can be chosen as a co-retract of T.

Special case

R is a countable relational signature, T an R-structure, and $\mathcal{U} = \mathcal{C}$ is the class of all finite R-structures.
T-colored structures

Given

- a strict Fraïssé-class \mathcal{U},
- a Fraïssé-class \mathcal{C}, that is free in \mathcal{U}, and
- $T \in \overline{\mathcal{U}}$.

Definition

A **T-colored structure in $\overline{\mathcal{C}}$** is a pair (A, a) such that $A \in \overline{\mathcal{C}}$ and $a : A \to T$ is a homomorphism. The class of all such structures is denoted by $\text{Col}_C(T)$.

Note

A countable structure A is in $\overline{\mathcal{C}} \cap \overline{\text{CSP}(T)}$ if and only if there exists $f : A \to T$ such that (A, a) is a T-colored structure in $\overline{\mathcal{C}}$.
Morphisms for \mathbf{T}-colored structures

Strong homomorphisms

$f : (\mathbf{A}, a) \to (\mathbf{B}, b)$ is called a strong homomorphism if $f : \mathbf{A} \to \mathbf{B}$ is a homomorphism and $b \circ f = a$. Analogously strong embeddings and strong automorphisms are defined. $\text{sAut}(\mathbf{A}, a)$ denotes the group of strong automorphisms.

Weak homomorphisms

A weak homomorphism from (\mathbf{A}, a) to (\mathbf{B}, b) is a pair (f, g) such that $f : \mathbf{A} \to \mathbf{B}$, $g \in \text{Aut}(\mathbf{T})$, $b \circ f = g \circ a$. If f is an embedding (an automorphism), then (f, g) is called a weak embedding (a weak automorphism). Composition is component-wise. $\text{wAut}(\mathbf{A}, a)$ denotes the group of weak automorphisms.

$c\text{Aut}(\mathbf{A}, a) := \{ f \in \text{Aut}(\mathbf{A}) \mid \exists g \in \text{Aut}(\mathbf{T}) : (f, g) \in \text{wAut}(\mathbf{A}, a)\}.$

Remark

- We have $f : (\mathbf{A}, a) \to (\mathbf{B}, b)$ iff $(f, 1_\mathbf{T}) : (\mathbf{A}, a) \to (\mathbf{B}, b)$.
- If a is surjective, then $c\text{Aut}(\mathbf{A}, a) \cong \text{wAut}(\mathbf{A}, a)$.
Universal homogeneous T-colored structures

Theorem

There exists $(U, u) \in \text{Col}_C(T)$ such that

1. for every $(A, a) \in \text{Col}_C(T)$ there exists an embedding $\iota : (A, a) \hookrightarrow (U, u)$ (universality),

2. for every finite $(A, a) \in \text{Col}_C(T)$, and for all $\iota_1, \iota_2 : (A, a) \hookrightarrow (U, u)$ there exists $f \in \text{sAut}(U, u)$ such that $f \circ \iota_1 = \iota_2$ (homogeneity).

Moreover, all countable universal homogeneous T-colored structures are mutually isomorphic.

Remark

- If F-$\text{Lim}(C)$ is finite or ω-categorical, and if T is finite, then $\text{sAut}(U, u)$ is oligomorphic.
- If $T \in \overline{C}$, then T is a retract of U.
w-homogeneity

Definition

$(U, u) \in \text{Col}_C(T)$ is called **w-homogeneous** if for every finite $(A, a) \in \text{Col}_C(T)$, and for $(f_1, g_2), (f_2, g_2) : (A, a) \hookrightarrow (U, u)$ there exists $(f, g) \in w\text{Aut}(U, u)$ such that $(f, g) \circ (f_1, g_1) = (f_2, g_2)$.

Proposition

Let $(U, u) \in \text{Col}_C(T)$ be universal and homogeneous. Then (U, u) is w-homogeneous, too.

Remark

- If $F\text{-Lim}(C)$ is finite or ω-categorical, and if T is finite or ω-categorical, too, then $c\text{Aut}(U, u)$ is oligomorphic.
Universal homogeneous objects in categories

Definition
We call a category \mathcal{C} a λ-amalgamation category if
1. all morphisms of \mathcal{C} are monomorphisms,
2. \mathcal{C} is λ-algebroidal,
3. $\mathcal{C}_{<\lambda}$ has the joint embedding property,
4. $\mathcal{C}_{<\lambda}$ has the amalgamation property.

Theorem (Droste, Göbel ’92)
Let λ be a regular cardinal, and let \mathcal{C} be a λ-algebroidal category in which all morphisms are monomorphisms. Then there exists a \mathcal{C}-universal, $\mathcal{C}_{<\lambda}$-homogeneous object in \mathcal{C} if and only if \mathcal{C} is a λ-amalgamation category. Moreover, any two \mathcal{C}-universal, $\mathcal{C}_{<\lambda}$-homogeneous objects in \mathcal{C} are isomorphic.
Amalgamation pairs

Definition
A pair of categories \((\mathcal{A}, \hat{\mathcal{A}})\) is called a \(\lambda\)-amalgamation pair if
1. \(\mathcal{A} \leq \hat{\mathcal{A}}\) is isomorphism closed,
2. all morphisms of \(\mathcal{A}\) are monomorphisms,
3. \(\mathcal{A}\) is \(\lambda\)-algebroidal,
4. \(\mathcal{A}_{<\lambda}\) has the free joint embedding property in \(\hat{\mathcal{A}}\), and
5. \(\mathcal{A}_{<\lambda}\) has the free amalgamation property in \(\hat{\mathcal{A}}\).

Remark
\(\lambda\)-amalgamation pairs are a category-theoretic version of the idea of free amalgamation classes and of strict amalgamation classes.
Theorem

Let \((\widehat{\mathcal{A}}, \mathcal{A})\) be a \(\lambda\)-amalgamation pair, \(\mathcal{B}\) be a \(\lambda\)-amalgamation category, and let \(\mathcal{C}\) be a category. Let \(\widehat{F} : \widehat{\mathcal{A}} \to \mathcal{C}\), \(G : \mathcal{B} \to \mathcal{C}\) and let \(F\) be the restriction of \(\widehat{F}\) to \(\mathcal{A}\). Further suppose that

1. \(\widehat{F}\) preserves weak coproducts and weak pushouts in \(\mathcal{A}_{<\lambda}\),
2. \(F\) and \(G\) are \(\lambda\)-continuous,
3. \(F\) preserves \(\lambda\)-smallness,
4. \(G\) preserves monomorphisms,
5. for every \(A \in \mathcal{A}_{<\lambda}\) and for every \(B \in \mathcal{B}_{<\lambda}\) there are at most \(\lambda\) morphisms in \(\mathcal{C}(FA \to GB)\).

Then \((F \downarrow G)\) has a \((F \downarrow G)\)-universal, \((F \downarrow G)_{<\lambda}\)-homogeneous object. Moreover, up to isomorphism there is just one such object in \((F \downarrow G)\).
Definition
A Fraïssé-class \mathcal{C} has the Hrushovski property if for every $A \in \mathcal{C}$ there exists a $B \in \mathcal{C}$ such that $A \leq B$ and such that every isomorphism between substructures of A extends to an automorphism of B.

Definition
Let $G \leq S_\omega$. Then G is said to have the small index property if every subgroup of index less than 2^{\aleph_0} contains the stabilizer of a finite tuple (i.e. subgroups of small index are open in the topology of pointwise convergence on G).

Remark
- The Hrushovski-property of a free amalgamation class \mathcal{C} implies the small index property of the automorphism group of $\text{F-Lim}(\mathcal{C})$.
- The Hrushovski-property can straight-forwardly be defined for Fraïssé-classes of finite constraint structures.
Link-structures
A finite R-structure A is called a link-structure, if either $|A| = 1$ or there exist $a_1, \ldots, a_n \in A$ such that $A = \{a_1, \ldots, a_n\}$ and for some $\varrho \in R^{(n)}$ we have $(a_1, \ldots, a_n) \in \varrho_A$.

Link-type
If \mathcal{L} is a set of link-structures, then we say that a structure A has link type \mathcal{L} if every substructure of A that is a link structure, is isomorphic to some structure from \mathcal{L}.

Free monotone amalgamation classes
A free amalgamation class is called monotone if it is a CSP, too.

Definition
Let \mathcal{C} be a free monotone amalgamation class, \mathcal{L} be a set of link-structures. By $\mathcal{C}_\mathcal{L}$ we denote the class of all structures from \mathcal{C} whose link-type is \mathcal{L}.

Remark
$\mathcal{C}_\mathcal{L}$ is a free amalgamation class, too.
Definition
A finite structure is called **sparse** if it has only finitely many non-empty basic relations. A relational structure is called sparse if all finite substructures are sparse.

Theorem
Let R be any relational signature, let \mathcal{C} be a free, monotone amalgamation class, and let \mathcal{L} be a countable set of sparse link-structures. Let T be any countable R-structure. Then $\text{Col}_{\mathcal{C}_L}(T)$ has the Hrushovski property. If (U, u) is a universal homogeneous T-colored structure in \mathcal{C}_L, then $\text{sAut}(U, u)$ has the small index property.

Remark
- The proof uses an adapted version of a criterion for the (SIP) due to Herwig (which in turn generalizes Hrushovski’s ideas from graphs to relational structures).
- If $\text{sAut}(U, u)$ is oligomorphic, then it has uncountable cofinality and the Bergman-property. (Kechris, Rosendal)