How many Higher Commutator Operations can we Define on a Given Congruence Lattice of a Mal’cev Algebra?

Erhard Aichinger and Nebojša Mudrinski

Institute of Algebra, University Linz, Austria
Department of Mathematics and Informatics, University of Novi Sad, Serbia
erhard@algebra.uni-linz.ac.at, nmudrinski@dpi.uns.ac.rs

AAA83, Novi Sad, March 2012
Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.
Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.

HOPE: Every such a clone is determined by the set of all unary polynomials and all higher commutators.
Higher Commutators

In general, introduced by A. Bulatov in 2001:

\[[\bullet, \ldots, \bullet]\]

as an \(n\)-ary operation, for each \(n \geq 2\), on the lattice of congruences that satisfies the certain centralizing condition.
Higher Commutators

In general, introduced by A. Bulatov in 2001:

\[[\bullet, \ldots, \bullet] \]

as an \(n \)-ary operation, for each \(n \geq 2 \), on the lattice of congruences that satisfies the certain centralizing condition.

Definition for expanded groups:

Theorem. (E. Aichinger and \(\sim \), published 2010) If \(A_1, \ldots, A_n \in \text{Id } V, V = \langle V, +, F \rangle \) then \([A_1, \ldots, A_n]\) is an ideal generated by the set

\[\{ p(a_1, \ldots, a_n) | a_i \in A_i, 1 \leq i \leq n, p \in \text{Pol}_n V \} \]

such that \(p(x_1, \ldots, x_n) = 0 \) whenever \(\exists i \) such that \(x_i = 0 \).
Properties of Higher Commutators in Mal’cev Algebras

Theorem. (E. Aichinger and Ė., published 2010)

Let A be a Mal’cev algebra, $n \geq 2$, $I \neq \emptyset$, and

$\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \text{Con} A$

(HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^{n} \alpha_i$

(HC2) $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] \leq [\beta_1, \ldots, \beta_n]$

(HC3) $[\alpha_1, \ldots, \alpha_n] \leq [\alpha_2, \ldots, \alpha_n]$

(HC4) $[\alpha_1, \ldots, \alpha_n] = [\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}]$, for all permutations π on $\{1, \ldots, n\}$

(HC7) $\bigvee_{i \in I} [\alpha_1, \ldots, \alpha_{j-1}, \rho_i, \alpha_{j+1}, \ldots, \alpha_k] = [\alpha_1, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_i, \alpha_{j+1}, \ldots, \alpha_k]$, for all $j \in \{1, \ldots, k\}$

(HC8) $[\alpha_1, \ldots, \alpha_j, [\alpha_{j+1}, \ldots, \alpha_k]] \leq [\alpha_1, \ldots, \alpha_k]$, for all $j \in \{1, \ldots, k-2\}$.

Erhard Aichinger and Nebojša Mudrinski
The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

\[[\bullet, \bullet], \ldots, [\bullet, \ldots, \bullet], \ldots\]

on the congruence lattice of an algebra - one operation for each arity not less than two.
Bulatov obviously defined the sequence of higher commutators

\[[\bullet, \bullet], \ldots, [\bullet, \ldots, \bullet], \ldots \]

on the congruence lattice of an algebra - one operation for each arity not less than two.

This sequence satisfies the properties

(HC1), (HC2), (HC3), (HC4), (HC7), (HC8).
Sequences of Operations

Let L be a lattice. We call the set $\langle f_i : L^i \to L \mid i \geq 2 \rangle$ a sequence of operations on the lattice L if it satisfies the following properties:

\[(HC3) \quad f_{n+1}(\alpha_1, \ldots, \alpha_{n+1}) \leq f_n(\alpha_2, \ldots, \alpha_{n+1})\]
Sequences of Operations

Let L be a lattice. We call the set $\langle f_i : L^i \to L \mid i \geq 2 \rangle$ a sequence of operations on the lattice L if it satisfies the following properties:

(HC3) $f_{n+1}(\alpha_1, \ldots, \alpha_{n+1}) \leq f_n(\alpha_2, \ldots, \alpha_{n+1})$

(HC4) $f_n(\alpha_1, \ldots, \alpha_n) = f_n(\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)})$ for all permutations π on the set $\{1, \ldots, n\}$
Sequences of Operations

Let L be a lattice. We call the set $\langle f_i : L^i \to L \mid i \geq 2 \rangle$ a sequence of operations on the lattice L if it satisfies the following properties:

(HC3) $f_{n+1}(\alpha_1, \ldots, \alpha_{n+1}) \leq f_n(\alpha_2, \ldots, \alpha_{n+1})$

(HC4) $f_n(\alpha_1, \ldots, \alpha_n) = f_n(\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)})$ for all permutations π on the set $\{1, \ldots, n\}$

(HC8) $f_k(\alpha_1, \ldots, \alpha_{k-1}, f_{n-k+1}(\alpha_k, \ldots, \alpha_n)) \leq f_n(\alpha_1, \ldots, \alpha_n)$ where $k \in \{2, \ldots, n-1\}$ and $n \neq 2$,

for all $n \geq 2$ and for all $\alpha_1, \ldots, \alpha_n \in L$.
Sequences With Additional Properties

We say that sequences of operations $\langle f_i : L^i \to L \mid i \geq 2 \rangle$ on a lattice L satisfies

(HC1) if $f_n(\alpha_1, \ldots, \alpha_n) \leq \bigwedge_{i=1}^{n} \alpha_i$,

(HC2) if $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow f_n(\alpha_1, \ldots, \alpha_n) \leq f_n(\beta_1, \ldots, \beta_n)$,

(HC7) if $\bigvee_{i \in I} f_n(\alpha_1, \ldots, \alpha_{j-1}, \rho_i, \alpha_{j+1}, \ldots, \alpha_n) = f_n(\alpha_1, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_i, \alpha_{j+1}, \ldots, \alpha_n)$,

for all $n \geq 2$, $I \neq \emptyset$, $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in L$, $\{\rho_i \mid i \in I\} \subseteq L$ and $j \in \{1, \ldots, n\}$.
Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.
Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?
Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.
Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

Answer to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).
Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

Answer to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).

Question 2: Are there always infinitely many such sequences?
The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L splits if

$$(\exists \delta, \epsilon \in L)(\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L)(\alpha \leq \delta \lor \alpha \geq \epsilon)).$$

Then, we call (δ, ϵ) a splitting pair.
The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L *splits* if

$$(\exists \delta, \epsilon \in L)(\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L)(\alpha \leq \delta \lor \alpha \geq \epsilon)).$$

Then, we call (δ, ϵ) a *splitting pair*.

Examples:

The diamond does not split. The other three lattices on the picture split.
The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L splits if

$$(\exists \delta, \epsilon \in L)(\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L)(\alpha \leq \delta \lor \alpha \geq \epsilon)).$$

Then, we call (δ, ϵ) a *splitting pair*.

Examples:
The diamond does not split. The other three lattices on the picture split.

![Diagram of lattices](image-url)
The Strong Splitting Property

Definition. We say that L **strongly splits** if it splits and

$$(\exists \delta, \varepsilon \in L) (\delta < 1 \land \varepsilon > 0 \land (\forall \alpha \in L) (\alpha \leq \delta \lor \alpha \geq \varepsilon)$$

$$(\land (\varepsilon \leq \delta \text{ or } \varepsilon \text{ is not an atom or } \delta \text{ is not a coatom})).$$

Examples: The two element lattice and M_2 do not split strongly, but the third lattice does. We denote it by L_s.

![Diagram](image-url)
The Strong Splitting Property

Definition. We say that L **strongly splits** if it splits and

$$(\exists \delta, \epsilon \in L)(\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L)(\alpha \leq \delta \lor \alpha \geq \epsilon)$$

$$\land (\epsilon \leq \delta \lor \epsilon \text{ is not an atom or } \delta \text{ is not a coatom}))$$.

Examples: The two element lattice and M_2 do not split strongly, but the third lattice does. We denote it by L_s.

![Diagram of lattices](image)
The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies $(HC1)$ and $(HC7)$. Then, $f(1,1,1) = 0$.
The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies $(HC1)$ and $(HC7)$. Then, $f(1, 1, 1) = 0$.

Proof: Let $\alpha, \beta, \gamma \notin \{0, 1\}$. Using $(HC1)$ and $(HC7)$ we obtain

$$f(1, 1, 1) = f(\beta \lor \gamma, \alpha \lor \gamma, \alpha \lor \beta) = 0.$$
The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, $f(1,1,1) = 0$.

Proof: Let $\alpha, \beta, \gamma \notin \{0, 1\}$. Using (HC1) and (HC7) we obtain

$$f(1,1,1) = f(\beta \lor \gamma, \alpha \lor \gamma, \alpha \lor \beta) = 0.$$

Proposition. There are finitely many sequences of operations on the diamond that satisfy properties (HC1), (HC2) and (HC7).
The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\langle f_k | k \geq 2 \rangle$ is a sequence of operations on L that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \geq 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \geq 2$.
The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\langle f_k | k \geq 2 \rangle$ is a sequence of operations on L that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \geq 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \geq 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_n(\theta, \ldots, \theta) \neq 0$. Hence, $f_n(\theta, \ldots, \theta) = \theta$, because θ is an atom. We will prove that

$$f_k(\theta, \ldots, \theta) = \theta \text{ for all } k \geq 2. \quad \Box$$
The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\langle f_k | k \geq 2 \rangle$ is a sequence of operations on L that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \geq 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \geq 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_n(\theta, \ldots, \theta) \neq 0$. Hence, $f_n(\theta, \ldots, \theta) = \theta$, because θ is an atom. We will prove that

$$f_k(\theta, \ldots, \theta) = \theta \text{ for all } k \geq 2. \quad \square$$

Proposition. There are only two sequences of operations that satisfy (HC1), (HC2) and (HC7) on the two element lattice.
How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \geq 2$ we have

$$f(\delta, \ldots, \delta) = g(\delta, \ldots, \delta) \land f(\epsilon, \ldots, \epsilon) = g(\epsilon, \ldots, \epsilon) \implies f = g,$$

for all n-ary functions f and g on M_2 that satisfy (HC1) and (HC7).
How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \geq 2$ we have

$$f(\delta, \ldots, \delta) = g(\delta, \ldots, \delta) \land f(\epsilon, \ldots, \epsilon) = g(\epsilon, \ldots, \epsilon) \Rightarrow f = g,$$

for all n-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

Proof: If $(x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n$ and $(x_1, \ldots, x_n) \not\in \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f(x_1, \ldots, x_n) = 0.$
How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \geq 2$ we have

$$f(\delta, \ldots, \delta) = g(\delta, \ldots, \delta) \land f(\epsilon, \ldots, \epsilon) = g(\epsilon, \ldots, \epsilon) \Rightarrow f = g,$$

for all n-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

Proof: If $(x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n$ and $(x_1, \ldots, x_n) \not\in \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f(x_1, \ldots, x_n) = 0$.

We know $\delta \lor \epsilon = 1$. Using (HC7) we obtain the statement.

\[\square\]
How Do We Proceed?

Proposition. Let \(\delta, \epsilon \in M_2 \setminus \{0, 1\} \). Then, for each \(n \geq 2 \) we have

\[
f(\delta, \ldots, \delta) = g(\delta, \ldots, \delta) \land f(\epsilon, \ldots, \epsilon) = g(\epsilon, \ldots, \epsilon) \implies f = g,
\]

for all \(n \)-ary functions \(f \) and \(g \) on \(M_2 \) that satisfy (HC1) and (HC7).

Proof: If \((x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n\) and

\((x_1, \ldots, x_n) \not\in \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}\) then, using (HC1) we have

\[
f(x_1, \ldots, x_n) = 0.
\]

We know \(\delta \lor \epsilon = 1 \). Using (HC7) we obtain the statement. \(\square \)

Proposition. There are finitely many sequences of operations on the lattice \(M_2 \) that satisfy properties (HC1), (HC2) and (HC7).
The Example of a Strongly Splitting Lattice

Proposition. Let \(n \geq 2 \) and \((\delta, \epsilon)\) the splitting pair of the lattice \(L_s \). If we define \(f_n : L^n_s \to L_s \) such that

\[
f_n(\alpha_1, \ldots, \alpha_n) := \begin{cases}
0 & , (\exists i) \alpha_i \leq \delta \\
\epsilon & , \text{otherwise,}
\end{cases}
\]

then \(f_n \) satisfies (HC1), (HC2) and (HC7).
The Example of a Strongly Splitting Lattice

Proposition. Let $n \geq 2$ and (δ, ϵ) the splitting pair of the lattice L_s. If we define $f_n : L_s^n \rightarrow L_s$ such that
\[
 f_n(\alpha_1, \ldots, \alpha_n) := \begin{cases}
 0, & (\exists i) \alpha_i \leq \delta \\
 \epsilon, & \text{otherwise},
 \end{cases}
\]
then f_n satisfies (HC1), (HC2) and (HC7).

Proposition. The following sequences
\[
 \langle f_2, 0, 0, \ldots \rangle, \langle f_2, f_3, 0, \ldots \rangle, \ldots
\]
are infinitely many sequences of operations on the lattice L_s that satisfy (HC1), (HC2) and (HC7).
The Answer

Theorem. Let A be a Mal’cev algebra with a finite congruence lattice L. There are infinitely many sequences of operations on the lattice L that satisfy properties (HC1), (HC2) and (HC7) if and only if L splits strongly.