How many Higher Commutator Operations can we Define on a Given Congruence Lattice of a Mal'cev Algebra?

Erhard Aichinger and Nebojša Mudrinski

Institute of Algebra, University Linz, Austria
Department of Mathematics and Informatics, University of Novi Sad, Serbia erhard@algebra.uni-linz.ac.at, nmudrinski@dmi.uns.ac.rs

AAA83, Novi Sad, March 2012

Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.

Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.

HOPE: Every such a clone is determined by the set of all unary polynomials and all higher commutators.

Higher Commutators

In general, introduced by A. Bulatov in 2001:

as an n-ary operation, for each $n \geq 2$, on the lattice of congruences that satisfies the certain centralizing condition.

Higher Commutators

In general, introduced by A. Bulatov in 2001:

$$
[\bullet, \ldots, \bullet]
$$

as an n-ary operation, for each $n \geq 2$, on the lattice of congruences that satisfies the certain centralizing condition.

Definition for expanded groups:
Theorem. (E. Aichinger and \sim, published 2010) If $A_{1}, \ldots, A_{n} \in \operatorname{Id} \mathbf{V}, \mathbf{V}=\langle V,+, F\rangle$ then $\left[A_{1}, \ldots, A_{n}\right]$ is an ideal generated by the set

$$
\left\{p\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, 1 \leq i \leq n, p \in \operatorname{Pol}_{n} \mathbf{V}\right.
$$

such that $p\left(x_{1}, \ldots, x_{n}\right)=0$ whenever $\exists i$ such that $\left.x_{i}=0\right\}$.

Properties of Higher Commutators in Mal'cev Algebras

Theorem. (E. Aichinger and \sim, published 2010)
Let \mathbf{A} be a Mal'cev algebra, $n \geq 2, I \neq \emptyset$, and
$\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Con} \mathbf{A}$
(HC1) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
(HC2) $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
(HC3) $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{2}, \ldots, \alpha_{n}\right]$
(HC4) $\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]$, for all permutations π on $\{1, \ldots, n\}$
(HC7) $\bigvee_{i \in I}\left[\alpha_{1}, \ldots, \alpha_{j-1}, \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]=$ $\left[\alpha_{1}, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]$, for all $j \in\{1, \ldots, k\}$
(HC8) $\left[\alpha_{1}, \ldots, \alpha_{j},\left[\alpha_{j+1}, \ldots, \alpha_{k}\right]\right] \leq\left[\alpha_{1}, \ldots, \alpha_{k}\right]$, for all $j \in\{1, \ldots, k-2\}$.

The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

$$
[\bullet, \bullet], \ldots,[\bullet, \ldots, \bullet], \ldots
$$

on the congruence lattice of an algebra - one operation for each arity not less then two.

The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

$$
[\bullet, \bullet], \ldots,[\bullet, \ldots, \bullet], \ldots
$$

on the congruence lattice of an algebra - one operation for each arity not less then two.

This sequence satisfies the properties
(HC1), (HC2), (HC3), (HC4), (HC7), (HC8).

Sequences of Operations

Let L be a lattice. We call the set $\left\langle f_{i}: L^{i} \rightarrow L \mid i \geq 2\right\rangle$ a sequence of operations on the lattice L if it satisfies the following properties:
(HC3) $f_{n+1}\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \leq f_{n}\left(\alpha_{2}, \ldots, \alpha_{n+1}\right)$

Sequences of Operations

Let L be a lattice. We call the set $\left\langle f_{i}: L^{i} \rightarrow L \mid i \geq 2\right\rangle$ a sequence of operations on the lattice L if it satisfies the following properties:
(HC3) $f_{n+1}\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \leq f_{n}\left(\alpha_{2}, \ldots, \alpha_{n+1}\right)$
(HC4) $f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f_{n}\left(\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right)$ for all permutations π on the set $\{1, \ldots, n\}$

Sequences of Operations

Let L be a lattice. We call the set $\left\langle f_{i}: L^{i} \rightarrow L \mid i \geq 2\right\rangle$ a sequence of operations on the lattice L if it satisfies the following properties:
(HC3) $f_{n+1}\left(\alpha_{1}, \ldots, \alpha_{n+1}\right) \leq f_{n}\left(\alpha_{2}, \ldots, \alpha_{n+1}\right)$
(HC4) $f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=f_{n}\left(\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right)$ for all permutations π on the set $\{1, \ldots, n\}$
(HC8) $f_{k}\left(\alpha_{1}, \ldots, \alpha_{k-1}, f_{n-k+1}\left(\alpha_{k}, \ldots, \alpha_{n}\right)\right) \leq f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $k \in\{2, \ldots, n-1\}$ and $n \neq 2$,
for all $n \geq 2$ and for all $\alpha_{1}, \ldots, \alpha_{n} \in L$.

Sequences With Additional Properties

We say that sequences of operations $\left\langle f_{i}: L^{i} \rightarrow L \mid i \geq 2\right\rangle$ on a lattice L satisfies
(HC1) if $f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \leq \bigwedge_{i=1}^{n} \alpha_{i}$,
(HC2) if $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right) \leq f_{n}\left(\beta_{1}, \ldots, \beta_{n}\right)$,
(HC7) if $\bigvee_{i \in I} f_{n}\left(\alpha_{1}, \ldots, \alpha_{j-1}, \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{n}\right)=$ $f_{n}\left(\alpha_{1}, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{n}\right)$,
for all $n \geq 2, I \neq \emptyset, \alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in L,\left\{\rho_{i} \mid i \in I\right\} \subseteq L$ and $j \in\{1, \ldots, n\}$.

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.
Question 1: How many sequences of operations that satisfy (HC 1), (HC 2) and (HC 7) can we define on L ?

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.
Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L ?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\left\langle f_{1}, f_{2}, \ldots\right\rangle$ on L that satisfy (HC 3) and (HC 4) is at most countable.

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.
Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L ?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\left\langle f_{1}, f_{2}, \ldots\right\rangle$ on L that satisfy (HC 3) and (HC 4) is at most countable.

Answere to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.
Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L ?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\left\langle f_{1}, f_{2}, \ldots\right\rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

Answere to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).

Question 2: Are there always infinitely many such sequences?

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1 . We say that L splits if

$$
(\exists \delta, \epsilon \in L)(\delta<1 \wedge \epsilon>0 \wedge(\forall \alpha \in L)(\alpha \leq \delta \vee \alpha \geq \epsilon))
$$

Then, we call (δ, ϵ) a splitting pair.

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1 . We say that L splits if

$$
(\exists \delta, \epsilon \in L)(\delta<1 \wedge \epsilon>0 \wedge(\forall \alpha \in L)(\alpha \leq \delta \vee \alpha \geq \epsilon))
$$

Then, we call (δ, ϵ) a splitting pair.
Examples:
The diamond does not split. The other three lattices on the picture split.

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1 . We say that L splits if

$$
(\exists \delta, \epsilon \in L)(\delta<1 \wedge \epsilon>0 \wedge(\forall \alpha \in L)(\alpha \leq \delta \vee \alpha \geq \epsilon))
$$

Then, we call (δ, ϵ) a splitting pair.
Examples:
The diamond does not split. The other three lattices on the picture split.

The Strong Splitting Property

Definition. We say that L strongly splits if it splits and

$$
\begin{aligned}
& (\exists \delta, \epsilon \in L)(\delta<1 \wedge \epsilon>0 \wedge(\forall \alpha \in L)(\alpha \leq \delta \vee \alpha \geq \epsilon) \\
& \wedge(\epsilon \leq \delta \text { or } \epsilon \text { is not an atom or } \delta \text { is not a coatom }))
\end{aligned}
$$

Examples: The two element lattice and M_{2} do not split strongly, but the third lattice does. We denote it by L_{s}.

The Strong Splitting Property

Definition. We say that L strongly splits if it splits and

$$
\begin{aligned}
& (\exists \delta, \epsilon \in L)(\delta<1 \wedge \epsilon>0 \wedge(\forall \alpha \in L)(\alpha \leq \delta \vee \alpha \geq \epsilon) \\
& \wedge(\epsilon \leq \delta \text { or } \epsilon \text { is not an atom or } \delta \text { is not a coatom }))
\end{aligned}
$$

Examples: The two element lattice and M_{2} do not split strongly, but the third lattice does. We denote it by L_{s}.

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, $f(1,1,1)=0$.

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, $f(1,1,1)=0$.

Proof: Let $\alpha, \beta, \gamma \notin\{0,1\}$. Using (HC1) and (HC7) we obtain

$$
f(1,1,1)=f(\beta \vee \gamma, \alpha \vee \gamma, \alpha \vee \beta)=0
$$

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, $f(1,1,1)=0$.

Proof: Let $\alpha, \beta, \gamma \notin\{0,1\}$. Using (HC1) and (HC7) we obtain

$$
f(1,1,1)=f(\beta \vee \gamma, \alpha \vee \gamma, \alpha \vee \beta)=0
$$

Proposition. There are finitely many sequences of operations on the diamond that satisfy properties (HC1), (HC2) and (HC7).

The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\left\langle f_{k} \mid k \geq 2\right\rangle$ is a sequence of operations on L that satisfies (HC 1) then $f_{k}(\theta, \ldots, \theta)=\theta$ for all $k \geq 2$ or $f_{k}(\theta, \ldots, \theta)=0$ for all $k \geq 2$.

The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\left\langle f_{k} \mid k \geq 2\right\rangle$ is a sequence of operations on L that satisfies (HC 1) then $f_{k}(\theta, \ldots, \theta)=\theta$ for all $k \geq 2$ or $f_{k}(\theta, \ldots, \theta)=0$ for all $k \geq 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_{n}(\theta, \ldots, \theta) \neq 0$. Hence, $f_{n}(\theta, \ldots, \theta)=\theta$, because θ is an atom. We will prove that

$$
f_{k}(\theta, \ldots, \theta)=\theta \text { for all } k \geq 2
$$

The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the largest element 1 and let θ be an atom of L. If $\left\langle f_{k} \mid k \geq 2\right\rangle$ is a sequence of operations on L that satisfies (HC 1) then $f_{k}(\theta, \ldots, \theta)=\theta$ for all $k \geq 2$ or $f_{k}(\theta, \ldots, \theta)=0$ for all $k \geq 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_{n}(\theta, \ldots, \theta) \neq 0$. Hence, $f_{n}(\theta, \ldots, \theta)=\theta$, because θ is an atom. We will prove that

$$
f_{k}(\theta, \ldots, \theta)=\theta \text { for all } k \geq 2
$$

Proposition. There are only two sequences of operations that satisfy (HC1), (HC2) and (HC7) on the two element lattice.

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_{2} \backslash\{0,1\}$. Then, for each $n \geq 2$ we have

$$
f(\delta, \ldots, \delta)=g(\delta, \ldots, \delta) \wedge f(\epsilon, \ldots, \epsilon)=g(\epsilon, \ldots, \epsilon) \Rightarrow f=g
$$

for all n-ary functions f and g on M_{2} that satisfy (HC1) and (HC7).

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_{2} \backslash\{0,1\}$. Then, for each $n \geq 2$ we have

$$
f(\delta, \ldots, \delta)=g(\delta, \ldots, \delta) \wedge f(\epsilon, \ldots, \epsilon)=g(\epsilon, \ldots, \epsilon) \Rightarrow f=g
$$

for all n-ary functions f and g on M_{2} that satisfy (HC1) and (HC7).

Proof: If $\left(x_{1}, \ldots, x_{n}\right) \in\{\delta, \epsilon\}^{n}$ and $\left(x_{1}, \ldots, x_{n}\right) \notin\{(\delta, \ldots, \delta),(\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f\left(x_{1}, \ldots, x_{n}\right)=0$.

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_{2} \backslash\{0,1\}$. Then, for each $n \geq 2$ we have

$$
f(\delta, \ldots, \delta)=g(\delta, \ldots, \delta) \wedge f(\epsilon, \ldots, \epsilon)=g(\epsilon, \ldots, \epsilon) \Rightarrow f=g
$$

for all n-ary functions f and g on M_{2} that satisfy (HC1) and (HC7).

Proof: If $\left(x_{1}, \ldots, x_{n}\right) \in\{\delta, \epsilon\}^{n}$ and
$\left(x_{1}, \ldots, x_{n}\right) \notin\{(\delta, \ldots, \delta),(\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f\left(x_{1}, \ldots, x_{n}\right)=0$.

We know $\delta \vee \epsilon=1$. Using (HC7) we obtain the statement.

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_{2} \backslash\{0,1\}$. Then, for each $n \geq 2$ we have

$$
f(\delta, \ldots, \delta)=g(\delta, \ldots, \delta) \wedge f(\epsilon, \ldots, \epsilon)=g(\epsilon, \ldots, \epsilon) \Rightarrow f=g
$$

for all n-ary functions f and g on M_{2} that satisfy (HC1) and (HC7).

Proof: If $\left(x_{1}, \ldots, x_{n}\right) \in\{\delta, \epsilon\}^{n}$ and
$\left(x_{1}, \ldots, x_{n}\right) \notin\{(\delta, \ldots, \delta),(\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f\left(x_{1}, \ldots, x_{n}\right)=0$.

We know $\delta \vee \epsilon=1$. Using (HC7) we obtain the statement.
Proposition. There are finitely many sequences of operations on the lattice M_{2} that satisfy properties (HC1), (HC2) and (HC7).

The Example of a Strongly Splitting Lattice

Proposition. Let $n \geq 2$ and (δ, ϵ) the splitting pair of the lattice L_{s}. If we define $f_{n}: L_{s}^{n} \rightarrow L_{s}$ such that

$$
f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right):= \begin{cases}0 & ,(\exists i) \alpha_{i} \leq \delta \\ \epsilon & , \text { otherwise }\end{cases}
$$

then f_{n} satisfies $(H C 1),(H C 2)$ and $(H C 7)$.

The Example of a Strongly Splitting Lattice

Proposition. Let $n \geq 2$ and (δ, ϵ) the splitting pair of the lattice L_{s}. If we define $f_{n}: L_{s}^{n} \rightarrow L_{s}$ such that

$$
f_{n}\left(\alpha_{1}, \ldots, \alpha_{n}\right):= \begin{cases}0 & ,(\exists i) \alpha_{i} \leq \delta \\ \epsilon & , \text { otherwise }\end{cases}
$$

then f_{n} satisfies $(\mathrm{HC} 1),(\mathrm{HC} 2)$ and $(\mathrm{HC} 7)$.
Proposition. The following sequences

$$
\left\langle f_{2}, 0,0, \ldots\right\rangle,\left\langle f_{2}, f_{3}, 0, \ldots\right\rangle, \ldots
$$

are infinitely many sequences of operations on the lattice L_{s} that satisfy (HC1), (HC2) and (HC7).

The Answer

Theorem. Let \mathbf{A} be a Mal'cev algebra with a finite congruence lattice L. There are infinitely many sequences of operations on the lattice L that satisfy properties $(\mathrm{HC} 1),(\mathrm{HC} 2)$ and $(\mathrm{HC} 7)$ if and only if L splits strongly.

