How many Higher Commutator Operations can we Define on a Given Congruence Lattice of a Mal'cev Algebra?

Erhard Aichinger and Nebojša Mudrinski

Institute of Algebra, University Linz, Austria Department of Mathematics and Informatics, University of Novi Sad, Serbia erhard@algebra.uni-linz.ac.at, nmudrinski@dmi.uns.ac.rs

AAA83, Novi Sad, March 2012

소리가 소문가 소문가 소문가

-

Higher Commutators Lattices

Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.

・ロン ・回と ・ヨン ・ヨン

-10

Higher Commutators Lattices

Motivation

PROBLEM: Describe all clones of operations on a finite set that contain all polynomial operations.

HOPE: Every such a clone is determined by the set of all unary polynomials and all higher commutators.

・ロン ・回 と ・ ヨ と ・

Higher Commutators Lattices

Higher Commutators

In general, introduced by A. Bulatov in 2001:

 $[\bullet,\ldots,\bullet]$

as an *n*-ary operation, for each $n \ge 2$, on the lattice of congruences that satisfies the certain centralizing condition.

・ロン ・回 ・ ・ ヨン ・ ヨン

-

Higher Commutators Lattices

Higher Commutators

In general, introduced by A. Bulatov in 2001:

 $[\bullet,\ldots,\bullet]$

as an *n*-ary operation, for each $n \ge 2$, on the lattice of congruences that satisfies the certain centralizing condition.

Definition for expanded groups: **Theorem.** (E. Aichinger and \sim , published 2010) If $A_1, \ldots, A_n \in \operatorname{Id} \mathbf{V}, \mathbf{V} = \langle V, +, F \rangle$ then $[A_1, \ldots, A_n]$ is an ideal generated by the set

$$\{p(a_1,\ldots,a_n) \mid a_i \in A_i, 1 \le i \le n, p \in \mathsf{Pol}_n \mathbf{V}\}$$

such that $p(x_1, \ldots, x_n) = 0$ whenever $\exists i \text{ such that } x_i = 0$ }.

Higher Commutators Lattices

Properties of Higher Commutators in Mal'cev Algebras

Theorem. (E. Aichinger and \sim , published 2010) Let **A** be a Mal'cev algebra, n > 2, $I \neq \emptyset$, and $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_n\in\mathsf{Con}\,\mathsf{A}$ (HC1) $[\alpha_1, \ldots, \alpha_n] \leq \bigwedge_{i=1}^n \alpha_i$ (HC2) $\alpha_1 < \beta_1, \ldots, \alpha_n < \beta_n \Rightarrow [\alpha_1, \ldots, \alpha_n] < [\beta_1, \ldots, \beta_n]$ (HC3) $[\alpha_1, \ldots, \alpha_n] < [\alpha_2, \ldots, \alpha_n]$ (HC4) $[\alpha_1, \ldots, \alpha_n] = [\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}],$ for all permutations π on $\{1, \ldots, n\}$ (HC7) $\bigvee_{i \in I} [\alpha_1, \ldots, \alpha_{i-1}, \rho_i, \alpha_{i+1}, \ldots, \alpha_k] =$ $[\alpha_1,\ldots,\alpha_{i-1},\bigvee_{i\in I}\rho_i,\alpha_{i+1},\ldots,\alpha_k],$ for all $i \in \{1, \ldots, k\}$ (HC8) $[\alpha_1, \ldots, \alpha_i, [\alpha_{i+1}, \ldots, \alpha_k]] \leq [\alpha_1, \ldots, \alpha_k],$ for all $i \in \{1, ..., k-2\}$. ◆□→ ◆□→ ◆注→ ◆注→ □注 □

Higher Commutators Lattices

The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

$[\bullet,\bullet],\ldots,[\bullet,\ldots,\bullet],\ldots$

on the congruence lattice of an algebra - one operation for each arity not less then two.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Higher Commutators Lattices

The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

 $[\bullet,\bullet],\ldots,[\bullet,\ldots,\bullet],\ldots$

on the congruence lattice of an algebra - one operation for each arity not less then two.

This sequence satisfies the properties (HC1), (HC2), (HC3), (HC4), (HC7), (HC8).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Higher Commutators Lattices

Sequences of Operations

Let *L* be a lattice. We call the set $\langle f_i : L^i \to L | i \ge 2 \rangle$ a sequence of operations on the lattice *L* if it satisfies the following properties:

(HC3)
$$f_{n+1}(\alpha_1,\ldots,\alpha_{n+1}) \leq f_n(\alpha_2,\ldots,\alpha_{n+1})$$

イロト イポト イヨト イヨト

Sequences of Operations

Let *L* be a lattice. We call the set $\langle f_i : L^i \to L | i \ge 2 \rangle$ a sequence of operations on the lattice *L* if it satisfies the following properties:

(HC3)
$$f_{n+1}(\alpha_1, \dots, \alpha_{n+1}) \leq f_n(\alpha_2, \dots, \alpha_{n+1})$$

(HC4) $f_n(\alpha_1, \dots, \alpha_n) = f_n(\alpha_{\pi(1)}, \dots, \alpha_{\pi(n)})$ for all permutations π on the set $\{1, \dots, n\}$

イロト イポト イヨト イヨト

Sequences of Operations

Let *L* be a lattice. We call the set $\langle f_i : L^i \to L | i \ge 2 \rangle$ a sequence of operations on the lattice *L* if it satisfies the following properties:

$$\begin{array}{ll} (\mathrm{HC3}) & f_{n+1}(\alpha_1, \dots, \alpha_{n+1}) \leq f_n(\alpha_2, \dots, \alpha_{n+1}) \\ (\mathrm{HC4}) & f_n(\alpha_1, \dots, \alpha_n) = f_n(\alpha_{\pi(1)}, \dots, \alpha_{\pi(n)}) \text{ for all permutations } \pi \\ & \text{ on the set } \{1, \dots, n\} \\ (\mathrm{HC8}) & f_k(\alpha_1, \dots, \alpha_{k-1}, f_{n-k+1}(\alpha_k, \dots, \alpha_n)) \leq f_n(\alpha_1, \dots, \alpha_n) \text{ where} \\ & k \in \{2, \dots, n-1\} \text{ and } n \neq 2, \\ & \text{ for all } n \geq 2 \text{ and for all } \alpha_1, \dots, \alpha_n \in L. \end{array}$$

Higher Commutators Lattices

Sequences With Additional Properties

We say that sequences of operations $\langle f_i:L^i\to L\,|\,i\ge 2\rangle$ on a lattice L satisfies

(HC1) if
$$f_n(\alpha_1, \ldots, \alpha_n) \leq \bigwedge_{i=1}^n \alpha_i$$
,
(HC2) if $\alpha_1 \leq \beta_1, \ldots, \alpha_n \leq \beta_n \Rightarrow f_n(\alpha_1, \ldots, \alpha_n) \leq f_n(\beta_1, \ldots, \beta_n)$,
(HC7) if $\bigvee_{i \in I} f_n(\alpha_1, \ldots, \alpha_{j-1}, \rho_i, \alpha_{j+1}, \ldots, \alpha_n) = f_n(\alpha_1, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_i, \alpha_{j+1}, \ldots, \alpha_n)$,
for all $n \geq 2$, $I \neq \emptyset$, $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in L$, $\{\rho_i \mid i \in I\} \subseteq L$ and $j \in \{1, \ldots, n\}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

-

Higher Commutators Lattices

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

Answere to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Our Goal

Given: A congruence lattice L of a finite Mal'cev algebra.

Question 1: How many sequences of operations that satisfy (HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The number of sequences of functions $\langle f_1, f_2, \ldots \rangle$ on L that satisfy (HC3) and (HC4) is at most countable.

Answere to Question 1: There are at most countably many sequences of operations on L that satisfy (HC1), (HC2) and (HC7).

Question 2: Are there always infinitely many such sequences?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L splits if

 $(\exists \delta, \epsilon \in L) \big(\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L) (\alpha \le \delta \lor \alpha \ge \epsilon) \big).$

Then, we call (δ, ϵ) a *splitting pair*.

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L splits if

$$(\exists \delta, \epsilon \in L) (\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L) (\alpha \leq \delta \lor \alpha \geq \epsilon)).$$

Then, we call (δ, ϵ) a *splitting pair*.

Examples:

The diamond does not split. The other three lattices on the picture split.

・ 回 と ・ ヨ と ・ ヨ と

The Splitting Property

Definition. Let L be a lattice with the least element 0 and the largest element 1. We say that L splits if

$$(\exists \delta, \epsilon \in L) (\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L) (\alpha \leq \delta \lor \alpha \geq \epsilon)).$$

Then, we call (δ, ϵ) a *splitting pair*.

Examples:

The diamond does not split. The other three lattices on the picture split.

The Strong Splitting Property

Definition. We say that L strongly splits if it splits and

$$(\exists \delta, \epsilon \in L) (\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L) (\alpha \leq \delta \lor \alpha \geq \epsilon)$$

 $\wedge (\epsilon \leq \delta \text{ or } \epsilon \text{ is not an atom or } \delta \text{ is not a coatom})).$

Examples: The two element lattice and M_2 do not split strongly, but the third lattice does. We denote it by L_s .

・ 同 ト ・ ヨ ト ・ ヨ ト

The Strong Splitting Property

Definition. We say that L strongly splits if it splits and

$$(\exists \delta, \epsilon \in L) (\delta < 1 \land \epsilon > 0 \land (\forall \alpha \in L) (\alpha \le \delta \lor \alpha \ge \epsilon)$$

 $\wedge (\epsilon \leq \delta \text{ or } \epsilon \text{ is not an atom or } \delta \text{ is not a coatom})).$

Examples: The two element lattice and M_2 do not split strongly, but the third lattice does. We denote it by L_s .

伺下 イヨト イヨト

The Examples of Finitely Many Sequences The Example of Infinetly Many Sequences

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, f(1,1,1) = 0.

・ロト ・回ト ・ヨト ・ヨト

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, f(1,1,1) = 0.

Proof: Let $\alpha, \beta, \gamma \notin \{0, 1\}$. Using (HC1) and (HC7) we obtain

$$f(1,1,1) = f(\beta \lor \gamma, \alpha \lor \gamma, \alpha \lor \beta) = 0.$$

The Diamond

Proposition. Let f be a ternary function on the diamond that satisfies (HC1) and (HC7). Then, f(1,1,1) = 0.

Proof: Let $\alpha, \beta, \gamma \notin \{0, 1\}$. Using (HC1) and (HC7) we obtain

$$f(1,1,1) = f(\beta \lor \gamma, \alpha \lor \gamma, \alpha \lor \beta) = 0.$$

Proposition. There are finitely many sequences of operations on the diamond that satisfy properties (HC1), (HC2) and (HC7).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

The Two Element Lattice

Proposition. Let *L* be a lattice with the least element 0 and the largest element 1 and let θ be an atom of *L*. If $\langle f_k | k \ge 2 \rangle$ is a sequence of operations on *L* that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \ge 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \ge 2$.

The Two Element Lattice

Proposition. Let *L* be a lattice with the least element 0 and the largest element 1 and let θ be an atom of *L*. If $\langle f_k | k \ge 2 \rangle$ is a sequence of operations on *L* that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \ge 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \ge 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_n(\theta, \ldots, \theta) \neq 0$. Hence, $f_n(\theta, \ldots, \theta) = \theta$, because θ is an atom. We will prove that

$$f_k(heta,\ldots, heta)= heta$$
 for all $k\geq 2$. \Box

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Two Element Lattice

Proposition. Let *L* be a lattice with the least element 0 and the largest element 1 and let θ be an atom of *L*. If $\langle f_k | k \ge 2 \rangle$ is a sequence of operations on *L* that satisfies (HC1) then $f_k(\theta, \ldots, \theta) = \theta$ for all $k \ge 2$ or $f_k(\theta, \ldots, \theta) = 0$ for all $k \ge 2$.

Proof: Let us suppose that there exists an $n \in \mathbb{N}$ such that $f_n(\theta, \ldots, \theta) \neq 0$. Hence, $f_n(\theta, \ldots, \theta) = \theta$, because θ is an atom. We will prove that

$$f_k(\theta,\ldots,\theta)=\theta$$
 for all $k\geq 2$. \Box

Proposition. There are only two sequences of operations that satisfy (HC1), (HC2) and (HC7) on the two element lattice.

The Examples of Finitely Many Sequences The Example of Infinetly Many Sequences

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \ge 2$ we have

$$f(\delta,\ldots,\delta) = g(\delta,\ldots,\delta) \wedge f(\epsilon,\ldots,\epsilon) = g(\epsilon,\ldots,\epsilon) \Rightarrow f = g,$$

for all *n*-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \ge 2$ we have

$$f(\delta,\ldots,\delta) = g(\delta,\ldots,\delta) \wedge f(\epsilon,\ldots,\epsilon) = g(\epsilon,\ldots,\epsilon) \Rightarrow f = g,$$

for all *n*-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

Proof: If $(x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n$ and $(x_1, \ldots, x_n) \notin \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f(x_1, \ldots, x_n) = 0$.

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \ge 2$ we have

$$f(\delta,\ldots,\delta) = g(\delta,\ldots,\delta) \wedge f(\epsilon,\ldots,\epsilon) = g(\epsilon,\ldots,\epsilon) \Rightarrow f = g,$$

for all *n*-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

Proof: If $(x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n$ and $(x_1, \ldots, x_n) \notin \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f(x_1, \ldots, x_n) = 0$.

We know $\delta \lor \epsilon = 1$. Using (HC7) we obtain the statement.

How Do We Proceed?

Proposition. Let $\delta, \epsilon \in M_2 \setminus \{0, 1\}$. Then, for each $n \ge 2$ we have

$$f(\delta,\ldots,\delta) = g(\delta,\ldots,\delta) \wedge f(\epsilon,\ldots,\epsilon) = g(\epsilon,\ldots,\epsilon) \Rightarrow f = g,$$

for all *n*-ary functions f and g on M_2 that satisfy (HC1) and (HC7).

Proof: If $(x_1, \ldots, x_n) \in \{\delta, \epsilon\}^n$ and $(x_1, \ldots, x_n) \notin \{(\delta, \ldots, \delta), (\epsilon, \ldots, \epsilon)\}$ then, using (HC1) we have $f(x_1, \ldots, x_n) = 0$.

We know $\delta \lor \epsilon = 1$. Using (HC7) we obtain the statement.

Proposition. There are finitely many sequences of operations on the lattice M_2 that satisfy properties (HC1), (HC2) and (HC7).

The Example of a Strongly Splitting Lattice

Proposition. Let $n \ge 2$ and (δ, ϵ) the splitting pair of the lattice L_s . If we define $f_n : L_s^n \to L_s$ such that

$$f_n(\alpha_1,\ldots,\alpha_n) := \begin{cases} 0 & , (\exists i)\alpha_i \leq \delta \\ \epsilon & , \text{ otherwise,} \end{cases}$$

then f_n satisfies (HC1), (HC2) and (HC7).

The Example of a Strongly Splitting Lattice

Proposition. Let $n \ge 2$ and (δ, ϵ) the splitting pair of the lattice L_s . If we define $f_n : L_s^n \to L_s$ such that

$$f_n(\alpha_1, \dots, \alpha_n) := \begin{cases} 0 & , (\exists i) \alpha_i \leq \delta \\ \epsilon & , \text{ otherwise,} \end{cases}$$

then f_n satisfies (HC1), (HC2) and (HC7).

Proposition. The following sequences

$$\langle f_2, 0, 0, \dots \rangle, \langle f_2, f_3, 0, \dots \rangle, \dots$$

are infinitely many sequences of operations on the lattice L_s that satisfy (HC1), (HC2) and (HC7).

The Answer

Theorem. Let **A** be a Mal'cev algebra with a finite congruence lattice *L*. There are infinitely many sequences of operations on the lattice *L* that satisfy properties (HC1), (HC2) and (HC7) if and only if *L* splits strongly.

イロト イポト イヨト イヨト