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Motivation

PROBLEM: Describe all clones of operations on a finite set that
contain all polynomial operations.

HOPE: Every such a clone is determined by the set of all unary
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Higher Commutators

In general, introduced by A. Bulatov in 2001:

[•, . . . , •]

as an n-ary operation, for each n ≥ 2, on the lattice of
congruences that satisfies the certain centralizing condition.

Definition for expanded groups:
Theorem. (E. Aichinger and ∼, published 2010) If
A1, . . . ,An ∈ IdV, V = 〈V ,+,F 〉 then [A1, . . . ,An] is an ideal
generated by the set

{p(a1, . . . , an) | ai ∈ Ai , 1 ≤ i ≤ n, p ∈ PolnV

such that p(x1, . . . , xn) = 0 whenever ∃i such that xi = 0}.
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Properties of Higher Commutators in Mal’cev Algebras

Theorem. (E. Aichinger and ∼, published 2010)
Let A be a Mal’cev algebra, n ≥ 2, I 6= ∅, and
α1, . . . , αn, β1, . . . , βn ∈ ConA

(HC1) [α1, . . . , αn] ≤
∧n

i=1 αi

(HC2) α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

(HC3) [α1, . . . , αn] ≤ [α2, . . . , αn]

(HC4) [α1, . . . , αn] = [απ(1), . . . , απ(n)],
for all permutations π on {1, . . . , n}

(HC7)
∨

i∈I [α1, . . . , αj−1, ρi , αj+1, . . . , αk ] =
[α1, . . . , αj−1,

∨
i∈I ρi , αj+1, . . . , αk ],

for all j ∈ {1, . . . , k}
(HC8) [α1, . . . , αj , [αj+1, . . . , αk ]] ≤ [α1, . . . , αk ],

for all j ∈ {1, . . . , k − 2}.
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The Sequence of Higher Commutators

Bulatov obviously defined the sequence of higher commutators

[•, •], . . . , [•, . . . , •], . . .

on the congruence lattice of an algebra - one operation for each
arity not less then two.

This sequence satisfies the properties
(HC1), (HC2), (HC3), (HC4), (HC7), (HC8).
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Sequences of Operations

Let L be a lattice. We call the set 〈fi : Li → L | i ≥ 2〉 a sequence
of operations on the lattice L if it satisfies the following properties:

(HC3) fn+1(α1, . . . , αn+1) ≤ fn(α2, . . . , αn+1)

(HC4) fn(α1, . . . , αn) = fn(απ(1), . . . , απ(n)) for all permutations π
on the set {1, . . . , n}

(HC8) fk(α1, . . . , αk−1, fn−k+1(αk , . . . , αn)) ≤ fn(α1, . . . , αn) where
k ∈ {2, . . . , n − 1} and n 6= 2,

for all n ≥ 2 and for all α1, . . . , αn ∈ L.
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Erhard Aichinger and Neboǰsa Mudrinski How many Higher Commutator Operations can we Define on a Given Congruence Lattice of a Mal’cev Algebra?



Introduction
The Splitting Lattices

Small Lattices
The Main Result

Higher Commutators
Lattices

Sequences of Operations

Let L be a lattice. We call the set 〈fi : Li → L | i ≥ 2〉 a sequence
of operations on the lattice L if it satisfies the following properties:

(HC3) fn+1(α1, . . . , αn+1) ≤ fn(α2, . . . , αn+1)

(HC4) fn(α1, . . . , αn) = fn(απ(1), . . . , απ(n)) for all permutations π
on the set {1, . . . , n}

(HC8) fk(α1, . . . , αk−1, fn−k+1(αk , . . . , αn)) ≤ fn(α1, . . . , αn) where
k ∈ {2, . . . , n − 1} and n 6= 2,

for all n ≥ 2 and for all α1, . . . , αn ∈ L.
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Sequences With Additional Properties

We say that sequences of operations 〈fi : Li → L | i ≥ 2〉 on a
lattice L satisfies

(HC1) if fn(α1, . . . , αn) ≤
∧n

i=1 αi ,

(HC2) if α1 ≤ β1, . . . , αn ≤ βn ⇒ fn(α1, . . . , αn) ≤ fn(β1, . . . , βn),

(HC7) if
∨

i∈I fn(α1, . . . , αj−1, ρi , αj+1, . . . , αn) =
fn(α1, . . . , αj−1,

∨
i∈I ρi , αj+1, . . . , αn),

for all n ≥ 2, I 6= ∅, α1, . . . , αn, β1, . . . , βn ∈ L, {ρi | i ∈ I} ⊆ L and
j ∈ {1, . . . , n}.
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Our Goal

Given: A congruence lattice L of a finite Mal’cev algebra.

Question 1: How many sequences of operations that satisfy
(HC1), (HC2) and (HC7) can we define on L?

Theorem. (E. Aichinger, 2009) Let L be a finite lattice. The
number of sequences of functions 〈f1, f2, . . . 〉 on L that satisfy
(HC3) and (HC4) is at most countable.

Answere to Question 1: There are at most countably many
sequences of operations on L that satisfy (HC1), (HC2) and
(HC7).

Question 2: Are there always infinitely many such sequences?
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The Splitting Property

Definition. Let L be a lattice with the least element 0 and the
largest element 1. We say that L splits if

(∃δ, ε ∈ L)
(
δ < 1 ∧ ε > 0 ∧ (∀α ∈ L)(α ≤ δ ∨ α ≥ ε)

)
.

Then, we call (δ, ε) a splitting pair.

Examples:
The diamond does not split. The other three lattices on the
picture split.

dd d dd
��
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@@
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dε

δ
dd dd
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��
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@@δ
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The Strong Splitting Property

Definition. We say that L strongly splits if it splits and

(∃δ, ε ∈ L)
(
δ < 1 ∧ ε > 0 ∧ (∀α ∈ L)(α ≤ δ ∨ α ≥ ε)

∧(ε ≤ δ or ε is not an atom or δ is not a coatom)
)
.

Examples: The two element lattice and M2 do not split strongly,
but the third lattice does. We denote it by Ls .

d
dε
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��

��

@@

@@δ
ε

dd d dd d dd
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The Examples of Finitely Many Sequences
The Example of Infinetly Many Sequences

The Diamond

Proposition. Let f be a ternary function on the diamond that
satisfies (HC1) and (HC7). Then, f (1, 1, 1) = 0.

Proof: Let α, β, γ 6∈ {0, 1}. Using (HC1) and (HC7) we obtain

f (1, 1, 1) = f (β ∨ γ, α ∨ γ, α ∨ β) = 0.

Proposition. There are finitely many sequences of operations on
the diamond that satisfy properties (HC1), (HC2) and (HC7).
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The Two Element Lattice

Proposition. Let L be a lattice with the least element 0 and the
largest element 1 and let θ be an atom of L. If 〈fk |k ≥ 2〉 is a
sequence of operations on L that satisfies (HC1) then
fk(θ, . . . , θ) = θ for all k ≥ 2 or fk(θ, . . . , θ) = 0 for all k ≥ 2.

Proof: Let us suppose that there exists an n ∈ N such that
fn(θ, . . . , θ) 6= 0. Hence, fn(θ, . . . , θ) = θ, because θ is an atom.
We will prove that

fk(θ, . . . , θ) = θ for all k ≥ 2.

Proposition. There are only two sequences of operations that
satisfy (HC1), (HC2) and (HC7) on the two element lattice.
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How Do We Proceed?

Proposition. Let δ, ε ∈ M2\{0, 1}. Then, for each n ≥ 2 we have

f (δ, . . . , δ) = g(δ, . . . , δ) ∧ f (ε, . . . , ε) = g(ε, . . . , ε) ⇒ f = g ,

for all n-ary functions f and g on M2 that satisfy (HC1) and
(HC7).

Proof: If (x1, . . . , xn) ∈ {δ, ε}n and
(x1, . . . , xn) 6∈ {(δ, . . . , δ), (ε, . . . , ε)} then, using (HC1) we have
f (x1, . . . , xn) = 0.

We know δ ∨ ε = 1. Using (HC7) we obtain the statement.

Proposition. There are finitely many sequences of operations on
the lattice M2 that satisfy properties (HC1), (HC2) and (HC7).
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How Do We Proceed?

Proposition. Let δ, ε ∈ M2\{0, 1}. Then, for each n ≥ 2 we have

f (δ, . . . , δ) = g(δ, . . . , δ) ∧ f (ε, . . . , ε) = g(ε, . . . , ε) ⇒ f = g ,

for all n-ary functions f and g on M2 that satisfy (HC1) and
(HC7).

Proof: If (x1, . . . , xn) ∈ {δ, ε}n and
(x1, . . . , xn) 6∈ {(δ, . . . , δ), (ε, . . . , ε)} then, using (HC1) we have
f (x1, . . . , xn) = 0.

We know δ ∨ ε = 1. Using (HC7) we obtain the statement.

Proposition. There are finitely many sequences of operations on
the lattice M2 that satisfy properties (HC1), (HC2) and (HC7).
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The Example of a Strongly Splitting Lattice

Proposition. Let n ≥ 2 and (δ, ε) the splitting pair of the lattice
Ls . If we define fn : Ln

s → Ls such that

fn(α1, . . . , αn) :=

{
0 , (∃i)αi ≤ δ

ε , otherwise,

then fn satisfies (HC1), (HC2) and (HC7).

Proposition. The following sequences

〈f2, 0, 0, . . . 〉, 〈f2, f3, 0, . . . 〉, . . .

are infinitely many sequences of operations on the lattice Ls that
satisfy (HC1), (HC2) and (HC7).
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The Answer

Theorem. Let A be a Mal’cev algebra with a finite congruence
lattice L. There are infinitely many sequences of operations on the
lattice L that satisfy properties (HC1), (HC2) and (HC7) if and
only if L splits strongly.

Erhard Aichinger and Neboǰsa Mudrinski How many Higher Commutator Operations can we Define on a Given Congruence Lattice of a Mal’cev Algebra?


	Introduction
	Higher Commutators
	Lattices

	The Splitting Lattices
	Small Lattices
	The Examples of Finitely Many Sequences
	The Example of Infinetly Many Sequences

	The Main Result

