
Generalized
entropy in

algebras with
neutral

element and
in inverse
semigroups

E. Lehtonen

Generalized entropy in algebras with neutral

element and in inverse semigroups

Erkko Lehtonen

University of Luxembourg

joint work with
Agata Pilitowska (Warsaw)

AAA83, Novi Sad, March 15�18, 2012



Generalized
entropy in

algebras with
neutral

element and
in inverse
semigroups

E. Lehtonen

Commuting operations

Let A be an arbitrary set, and n and m positive integers.

We denote [n] := {1, . . . , n}.

De�nition

We say that f : An → A and g : Am → A commute if

g
(
f (a11, a12, . . . , a1n), . . . , f (am1, am2, . . . , amn)

)
= f

(
g(a11, a21, . . . , am1), . . . , g(a1n, a2n, . . . , amn)

)
,

for all aij ∈ A (i ∈ [m], j ∈ [n]).

If f and g commute, then we write f ⊥ g .
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Commuting operations

In other words, f and g commute if

f
(

f
(

f
(

f
(

g( a11 a12 · · · a1m ) = c1

g( a21 a22 · · · a2m ) = c2

...
...

...
...

g( an1 an2 · · · anm ) = cn

)
=

)
=

)
=

)
=

g( d1 d2 · · · dm ) = b
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Entropic algebras

De�nition

An algebra A = (A;F ) is called entropic if every pair of its

fundamental operations commute.



Generalized
entropy in

algebras with
neutral

element and
in inverse
semigroups

E. Lehtonen

Generalized entropy

De�nition

An algebra A = (A;F ) has the generalized entropic property if,

for every n-ary f ∈ F and every m-ary g ∈ F , there exist m-ary

terms t1, . . . , tn of A such that A satis�es the identity

g
(
f (x11, . . . , xn1), . . . , f (x1m, . . . , xnm)

)
≈

f
(
t1(x11, . . . , x1m), . . . , tn(xn1, . . . , xnm)

)
.

Remark

Entropy implies generalized entropy.
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Examples of entropic algebras and of algebras with

the generalized entropic property

Every commutative semigroup is entropic.

There are non-commutative semigroups that are entropic,

e.g., any left-zero band (a groupoid satisfying xy ≈ x).

The variety of groupoids satisfying

(x1x2)(x3x4) ≈ (x3x1)(x2x4)

has the generalized entropic property but it is not entropic

(Adaricheva, Pilitowska, Stanovský (2008)). Thus, there

exist non-commutative semigroups that have the

generalized entropic property but are not entropic.
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Subalgebras property and generalized entropy

De�nition

An algebra A = (A;F ) is said to have the subalgebras property

if, for each n-ary operation f ∈ F , the complex product

f (A1, . . . ,An) := {f (a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}

of its (nonempty) subalgebras A1, . . . ,An is again a subalgebra.

Theorem (Adaricheva, Pilitowska, Stanovský (2008))

Let V be a variety of algebras. Then each algebra in V has the

subalgebras property if and only if each algebra in V has the

generalized entropic property.

N.B. For an algebra, the subalgebras property does not

necessarily imply generalized entropy.
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Neutral elements

De�nition

An element e ∈ A is neutral for an operation f : An → A, if

f (a, e, . . . , e) = f (e, a, e, . . . , e) = · · · = f (e, . . . , e, a) = a

for every a ∈ A.

De�nition

An element e ∈ A is neutral for an algebra (A;F ) if e is neutral

for each operation f ∈ F .

Every e ∈ A is neutral for the identity map on A; this is the

only unary operation that has a neutral element.

Nullary operations do not have neutral elements.

If e is neutral for an algebra (A;F ), then {e} is a
subalgebra of (A;F ).
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Generalized entropy in algebras with a neutral

element

Theorem (Adaricheva, Pilitowska, Stanovský (2008))

Let (A;F ) be an algebra with a neutral element. Then (A;F )
has the generalized entropic property if and only if it is entropic.

Theorem

Let A = (A;F ) be an algebra of type τ with a neutral element

e. Then A has the generalized entropic property (or,

equivalently, A is entropic), if and only if there exists a

commutative monoid (A; f , e) such that A is the τ -algebra
derived from f .
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Derived algebras

Let f : An → A, n ≥ 1. For ` ≥ 0, de�ne the operation f (`) of

arity N(`) := `(n − 1) + 1 recursively as

f (0) := idA,

for ` ≥ 0, let

f (`+1)(a1, . . . , aN(`+1)) =

f (f (`)(a1, . . . , aN(`)), aN(`)+1, . . . , aN(`+1)),

for all a1, . . . , aN(`+1) ∈ A.

Note that f (1) = f .
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Derived algebras

De�nition

An algebra (A; (fi )i∈I ) of type τ = (ni )i∈I is the τ -algebra
derived from f , if for every i ∈ I , there exists an integer `i ≥ 0

such that ni = N(`i ) and fi = f (`i ).
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Inverse semigroups

An inverse semigroup is an algebra A = (A; ·,−1) of type (2, 1)
that satis�es the following identities:

x · (y · z) ≈ (x · y) · z (associativity),

x · x−1 · x ≈ x ,

x−1 · x · x−1 ≈ x−1.
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Inverse semigroups

Facts about inverse semigroups:

Idempotents commute.

Elements of the form xx−1 and x−1x are idempotent.

(x−1)−1 ≈ x .

(xy)−1 ≈ y−1x−1.

xkx−kxk ≈ xk and x−kxkx−k ≈ x−k for any natural

number k .
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Entropic inverse semigroups

Theorem

An inverse semigroup is entropic if and only if it is commutative.

Proof.

Assume �rst that A = (A; ·,−1) is commutative. We have:

· ⊥ ·, because (xy) · (uv) ≈ (xu) · (yv);
· ⊥ −1, because (xy)−1 ≈ (yx)−1 ≈ x−1y−1;
−1 ⊥ −1, trivially.

We conclude that A is entropic.

Assume then that A is entropic. Then (xy)−1 ≈ x−1y−1. On
the other hand, we have (xy)−1 ≈ y−1x−1. This implies that

xy ≈ yx , i.e., A is commutative.
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Inverse semigroups with generalized entropic

property

Theorem

An inverse semigroup has the generalized entropic property if

and only if it is commutative.
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Inverse semigroups with generalized entropic

property

In order to prove this theorem, we made use of the following

representation of the free monogenic inverse semigroup, which

has been attributed to Schein and to Gluskin. Each member of

the free monogenic inverse semigroup has a canonical form

x−pxqx−r ,

where 0 ≤ p ≤ q, 0 ≤ r ≤ q, q > 0. (Convention: x0 is an

empty symbol.) The canonical form of the product

(x−p1xq1x−r1)(x−p2xq2x−r2)

is x−pxqx−r , where

p = p1 + r1 + p2 −min{q1, r1 + p2},
q = q1 + r1 + p2 + q2 −min{q1, r1 + p2}+min{q2, r1 + p2},
r = r1 + p2 + r2 −min{q2, r1 + p2}.
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Inverse semigroups with generalized entropic

property

Lemma

Let A be an inverse semigroup and let

t1(x) = x−p1xq1x−q1 , t2(y) = y−p2yq2y−r2

for some 0 ≤ p1 ≤ q1 6= 0, 0 ≤ r1 ≤ q1, 0 ≤ p2 ≤ q2 6= 0,

0 ≤ r2 ≤ q2. Assume that A satis�es the identity

(xy)−1 ≈ t1(x)t2(y).

Then there exist positive integers a and b such that A satis�es

the identity xy ≈ ybxa.
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Inverse semigroups with generalized entropic

property

Proof.

The proof is a lengthy case analysis, according to whether strict

inequality or equality holds in each of the inequalities involving

p1, q1, r1, p2, q2, r2.

For example, consider the case when q1 = r1 and p1 = 0, i.e.,

t1(x) = xq1x−q1 . By the idempotency of x−1x we obtain

x−1 ≈ (x(x−1x))−1 ≈ t1(x)t2(x
−1x) ≈ xq1x−q1x−1x .

Since xq1x−q1 is an idempotent, too, this implies that x−1 is a

product of idempotents and is hence itself an idempotent. Thus

every element of A is idempotent. Since idempotents of an

inverse semigroup commute, this implies that A is

commutative, i.e., A satis�es xy ≈ yx .

Several other cases . . .
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Inverse semigroups with generalized entropic

property

Lemma

Let A be an inverse semigroup that satis�es xy ≈ ybxa for

some positive integers a and b. Then A satis�es:

1 x−1xa+1 ≈ x ≈ xb+1x−1,

2 xa+1 ≈ x2 ≈ xb+1,

3 x−1x2 ≈ x ≈ x2x−1.

Proof.

1 x ≈ x(x−1x) ≈ (x−1x)bxa ≈ x−1xxa ≈ x−1xa+1,

x ≈ (xx−1)x ≈ xb(xx−1)a ≈ xbxx−1 ≈ xb+1x−1.

2 x2 ≈ xx−1xa+1 ≈ xa+1,

x2 ≈ xb+1x−1x ≈ xb+1.

3 Follows immediately from (1) and (2).
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Inverse semigroups with generalized entropic
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Inverse semigroups with generalized entropic

property

Corollary

Let A be an inverse semigroup that satis�es xy ≈ ybxa for

some positive integers a and b. Then A is commutative.

Proof.

xy ≈ ybxa ≈ yb−1yxxa−1 ≈ yb−1y2y−1x−1x2xa−1 ≈
yb+1y−1x−1xa+1 ≈ yx .
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property

Corollary

Let A be an inverse semigroup that satis�es xy ≈ ybxa for

some positive integers a and b. Then A is commutative.

Proof.

xy ≈ ybxa ≈ yb−1yxxa−1 ≈ yb−1y2y−1x−1x2xa−1 ≈
yb+1y−1x−1xa+1 ≈ yx .



Generalized
entropy in

algebras with
neutral

element and
in inverse
semigroups

E. Lehtonen

Thank you for your attention!


