New Maximal Subsemigroups of the Semigroup of all Transformations on a countable set

Jörg Koppitz

Potsdam University

March 2012
• 2002 L. Heindorf: The maximal clones on countable sets that include all permutations

• 2005 M. Pinsker: Clones on uncountable sets that include all permutations

• April 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set containing all permutations

• September 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set.
History

- 2002 L. Heindorf: The maximal clones on countable sets that include all permutations
- 2005 M. Pinsker: Clones on uncountable sets that include all permutations
2002 L. Heindorf: The maximal clones on countable sets that include all permutations

2005 M. Pinsker: Clones on uncountable sets that include all permutations

April 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set containing all permutations
History

- 2002 L. Heindorf: The maximal clones on countable sets that include all permutations
- 2005 M. Pinsker: Clones on uncountable sets that include all permutations
- April 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set containing all permutations
- September 2011 J. East, D. Mitchell, Y. Péresse: Maximal subsemigroups of the semigroup of all mappings on an infinite set.
Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω:

- setwise stabilizer of a non-empty finite subset of Ω
- the stabilizer of a finite partition of Ω
- the stabilizer of an ultrafilter on Ω.
Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω:

- setwise stabilizer of a non-empty finite subset of Ω
Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω:

- setwise stabilizer of a non-empty finite subset of Ω
- the stabilizer of a finite partition of Ω
Classification of the maximal subsemigroups of the semigroup of all mappings on an infinite set Ω that contains one of the following subgroups of the symmetric group on Ω:

- setwise stabilizer of a non-empty finite subset of Ω
- the stabilizer of a finite partition of Ω
- the stabilizer of an ultrafilter on Ω.
...containing a particular semigroup U

- Let \(\Omega \) be countable
Let Ω be countable

Ω^Ω semigroup of all mappings on the set Ω
...containing a particular semigroup U

- Let Ω be countable
- Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^\Omega$
Let Ω be countable

Ω^Ω semigroup of all mappings on the set Ω

$U \subset \Omega^\Omega$

$W \leq \Omega^\Omega$, where each $\alpha \in U$ is a generator modulo W
Let Ω be countable

- Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^\Omega$
- $W \leq \Omega^\Omega$, where each $\alpha \in U$ is a generator modulo W
- $W \leq S \leq \Omega^\Omega$
...containing a particular semigroup U

- Let Ω be countable
- Ω^Ω semigroup of all mappings on the set Ω
- $U \subset \Omega^\Omega$
- $W \leq \Omega^\Omega$, where each $\alpha \in U$ is a generator modulo W
- $W \leq S \leq \Omega^\Omega$

Problem

Characterization of all maximal subsemigroups of S
we define a set \(\mathcal{H}(U, W) \)
we define a set $\mathcal{H}(U, W)$

Definition

For $M \subseteq \mathcal{P}(\Omega \Omega)$, let $J(M)$ be the set of all $A \subseteq \bigcup M$ with
\[
\forall m \in M (A \cap m \neq \emptyset) \land \forall a \in A \exists m \in M (A \cap m = \{a\})
\]
we define a set $\mathcal{H}(U, W)$

Definition

For $M \subseteq \mathcal{P}(\Omega^\Omega)$, let $J(M)$ be the set of all $A \subseteq \bigcup M$ with

$\forall m \in M (A \cap m \neq \emptyset) \& \forall a \in A \exists m \in M (A \cap m = \{a\})$

Definition

For $U \subseteq \Omega^\Omega$ and $W \subseteq \Omega^\Omega$, we put

$Gen(U) := \{A \subseteq \Omega^\Omega \mid A \text{ is finite and } \langle A \rangle \cap U \neq \emptyset\}$ and

$\mathcal{H}(U, W) := \{A \subseteq \Omega^\Omega \setminus W \mid A \in J(Gen(U))\}$
Main theorem

Theorem

Let $W \leq S \leq \Omega^\Omega$ and $U \subset \Omega^\Omega$ such that each $\alpha \in U$ is a generator modulo W. Then the following statements are equivalent:

(i) S is maximal.

(ii) There is a set $H \in \mathcal{H}(U, W)$ with $S = \Omega^\Omega \setminus H$.

Jörg Koppitz (Institute)
The maximal subsemigroups containing the symmetric group

- $\text{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
The maximal subsemigroups containing the symmetric group

- \(Inj(\Omega) \) the set of all injective but not surjective mappings on \(\Omega \)
- \(Sur(\Omega) \) the set of all surjective but not injective mappings on \(\Omega \)
The maximal subsemigroups containing the symmetric group

- $\text{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
- $\text{Sur}(\Omega)$ the set of all surjective but not injective mappings on Ω
- $\text{C}_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$

\textbf{Theorem (L. Heindorf 2002)}
Let S contain the symmetric group. S is maximal if $S = \Omega^\Omega$ for some $H \in \{ \text{Inj}(\Omega), \text{Sur}(\Omega), \text{C}_p(\Omega), \text{IF}(\Omega), \text{FI}(\Omega) \}$.
The maximal subsemigroups containing the symmetric group

- \(\text{Inj}(\Omega) \) the set of all injective but not surjective mappings on \(\Omega \)
- \(\text{Sur}(\Omega) \) the set of all surjective but not injective mappings on \(\Omega \)
- \(C_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \} \)
- \(k(\alpha) := |\{ x \in \text{im} \alpha \mid |x \alpha^{-1}| = \aleph_0 \} | \) (infinite contraction index of \(\alpha \))
The maximal subsemigroups containing the symmetric group

- \(\text{Inj}(\Omega) \) the set of all injective but not surjective mappings on \(\Omega \)
- \(\text{Sur}(\Omega) \) the set of all surjective but not injective mappings on \(\Omega \)
- \(C_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \} \)
- \(k(\alpha) := \left| \{ x \in \text{im}\alpha \mid |x\alpha^{-1}| = \aleph_0 \} \right| \) (infinite contraction index of \(\alpha \))
- \(d(\alpha) := |\Omega \setminus \text{im}\alpha| \) (defect of \(\alpha \))
The maximal subsemigroups containing the symmetric group

- $\text{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
- $\text{Sur}(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \}$
- $k(\alpha) := \left| \{ x \in \text{im}\alpha \mid |x\alpha^{-1}| = \aleph_0 \} \right|$ (infinite contraction index of α)
- $d(\alpha) := |\Omega \setminus \text{im}\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in \text{im}\alpha} (|x\alpha^{-1}| - 1)$ (collapse of α)
The maximal subsemigroups containing the symmetric group

- $Inj(\Omega)$ the set of all injective but not surjective mappings on Ω
- $Sur(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \mathbb{N}_0 \text{ and } k(\alpha) = \mathbb{N}_0 \}$
- $k(\alpha) := |\{ x \in \text{im}\alpha \mid |x\alpha^{-1}| = \mathbb{N}_0 \}|$ (infinite contraction index of α)
- $d(\alpha) := |\Omega \setminus \text{im}\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in \text{im}\alpha} (|x\alpha^{-1}| - 1)$ (collapse of α)
- $IF(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \mathbb{N}_0, c(\alpha) = \mathbb{N}_0, \text{ and } d(\alpha) < \mathbb{N}_0 \}$
The maximal subsemigroups containing the symmetric group

- \(\text{Inj}(\Omega) \) the set of all injective but not surjective mappings on \(\Omega \)
- \(\text{Sur}(\Omega) \) the set of all surjective but not injective mappings on \(\Omega \)
- \(C_p(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0 \} \)
- \(k(\alpha) := \{|x \in \text{im}\alpha \mid |x\alpha^{-1}| = \aleph_0| \text{ (infinite contraction index of } \alpha) \}
- \(d(\alpha) := |\Omega \setminus \text{im}\alpha| \text{ (defect of } \alpha) \)
- \(c(\alpha) := \sum_{x \in \text{im}\alpha} (|x\alpha^{-1}| - 1) \text{ (collapse of } \alpha) \)
- \(\text{IF}(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0, c(\alpha) = \aleph_0, \text{ and } d(\alpha) < \aleph_0 \} \)
- \(\text{FI}(\Omega) := \{ \alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0, d(\alpha) = \aleph_0, \text{ and } c(\alpha) < \aleph_0 \} \)
The maximal subsemigroups containing the symmetric group

- $\text{Inj}(\Omega)$ the set of all injective but not surjective mappings on Ω
- $\text{Sur}(\Omega)$ the set of all surjective but not injective mappings on Ω
- $C_p(\Omega) := \{\alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0 \text{ and } k(\alpha) = \aleph_0\}$
- $k(\alpha) := \left|\{x \in \text{im}\alpha \mid |x\alpha^{-1}| = \aleph_0\}\right|$ (infinite contraction index of α)
- $d(\alpha) := |\Omega \setminus \text{im}\alpha|$ (defect of α)
- $c(\alpha) := \sum_{x \in \text{im}\alpha} (|x\alpha^{-1}| - 1)$ (collapse of α)
- $\text{IF}(\Omega) := \{\alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0, c(\alpha) = \aleph_0, \text{ and } d(\alpha) < \aleph_0\}$
- $\text{FI}(\Omega) := \{\alpha \in \Omega^\Omega \mid \text{rank}(\alpha) = \aleph_0, d(\alpha) = \aleph_0, \text{ and } c(\alpha) < \aleph_0\}$

Theorem

(L. Heindorf 2002)

Let $S \leq \Omega^\Omega$ containing the symmetric group. S is maximal iff $S = \Omega^\Omega \setminus H$ for some $H \in \{\text{Inj}(\Omega), \text{Sur}(\Omega), C_p(\Omega), \text{IF}(\Omega), \text{FI}(\Omega)\}$
The maximal subsemigroups containing $\text{Inj}(\Omega)$ or $\text{Sur}(\Omega)$
Sur(X) and Inj(X)

- The maximal subsemigroups containing $\text{Inj}(\Omega)$ or $\text{Sur}(\Omega)$

Theorem

Let $S \leq \Omega^\Omega$ containing $\text{Sur}(\Omega)$. S is maximal iff $S = \Omega^\Omega \setminus \text{Inj}(\Omega)$ or $S = \Omega^\Omega \setminus \text{FI}(\Omega)$.
The maximal subsemigroups containing $\text{Inj}(\Omega)$ or $\text{Sur}(\Omega)$

Theorem

Let $S \leq \Omega^\Omega$ containing $\text{Sur}(\Omega)$. S is maximal iff $S = \Omega^\Omega \setminus \text{Inj}(\Omega)$ or $S = \Omega^\Omega \setminus \text{FI}(\Omega)$.

Theorem

Let $S \leq \Omega^\Omega$ containing $\text{Inj}(\Omega)$. S is maximal iff $S = \Omega^\Omega \setminus \text{Sur}(\Omega)$ or $S = \Omega^\Omega \setminus \text{IF}(\Omega)$ or $S = \Omega^\Omega \setminus \text{C}_p(\Omega)$.
maximal subsemigroups containing $FI(\Omega)$ (using main theorem)
maximal subsemigroups containing $\text{FI} (\Omega)$ (using main theorem)

Lemma

$\text{FI}(\Omega)$ is a subsemigroup of Ω^Ω.
maximal subsemigroups containing $FI(\Omega)$ (using main theorem)

Lemma

$FI(\Omega)$ is a subsemigroup of Ω^Ω.

Lemma

Each $\alpha \in C_p(\Omega) \cap Sur(\Omega)$ is a generator modulo $FI(\Omega)$.
maximal subsemigroups containing $\text{FI}(\Omega)$ (using main theorem)

Lemma

$\text{FI}(\Omega)$ is a subsemigroup of Ω^Ω.

Lemma

Each $\alpha \in C_p(\Omega) \cap \text{Sur}(\Omega)$ is a generator modulo $\text{FI}(\Omega)$.

Theorem

Let $S \leq \Omega^\Omega$ containing $\text{FI}(\Omega)$. S is maximal iff $S = \Omega^\Omega \setminus H$ for some $H \in \mathcal{H}(C_p(\Omega) \cap \text{Sur}(\Omega), \text{FI}(\Omega))$.
maximal subsemigroups containing $IF(\Omega)$ (using main theorem)
maximal subsemigroups containing $IF(\Omega)$ (using main theorem)

Lemma

$IF(\Omega)$ is a subsemigroup of Ω^Ω.
maximal subsemigroups containing $IF(\Omega)$ (using main theorem)

Lemma

$IF(\Omega)$ is a subsemigroup of Ω^Ω.

Lemma

Each $\alpha \in FI(\Omega) \cap \text{Inj}(\Omega)$ is a generator modulo $IF(\Omega)$.
maximal subsemigroups containing $IF(\Omega)$ (using main theorem)

Lemma

$IF(\Omega)$ is a subsemigroup of Ω^Ω.

Lemma

Each $\alpha \in FL(\Omega) \cap Inj(\Omega)$ is a generator modulo $IF(\Omega)$.

Theorem

Let $S \leq \Omega^\Omega$ containing $IF(\Omega)$. S is maximal iff $S = \Omega^\Omega \setminus H$ for some $H \in \mathcal{H}(Inj(\Omega) \cap FL(\Omega), IF(\Omega))$.
maximal subsemigroups containing $C_p(\Omega)$ (using main theorem)
- maximal subsemigroups containing $C_p(\Omega)$ (using main theorem)

Lemma

Each $\alpha \in Fl(\Omega) \cap Inj(\Omega)$ is a generator modulo $\langle C_p(\Omega) \rangle$.
maximal subsemigroups containing $C_p(\Omega)$ (using main theorem)

Lemma

Each $\alpha \in FL(\Omega) \cap Inj(\Omega)$ *is a generator modulo* $\langle C_p(\Omega) \rangle$.

Theorem

Let $S \leq \Omega^\Omega$ *containing* $IF(\Omega)$. *S is maximal iff* $S = \Omega^\Omega \setminus H$ *for some* $H \in H(Inj(\Omega) \cap FI(\Omega), C_p(\Omega))$.
