The asymptotic number of ways

to intersect two composition series

AAA83, Novi Sad, March 15-18, 2012

Gábor Czédli, László Ozsvárt, E. Tamás Schmidt, Balázs Udvari

14th March 2012

2'/18'

$$\vec{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\}$$

$$\vec{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\}$$

2'/18'

$$\vec{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\}$$
$$\vec{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\}$$

G. Grätzer, J.B. Nation (2010): $\exists \pi$, $H_i/H_{i-1} \searrow K_{\pi(i)}/K_{\pi(i)-1}$

2'/18'

$$\vec{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\}$$

$$\vec{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\}$$

G. Grätzer, J.B. Nation (2010): $\exists \pi, H_i/H_{i-1} \searrow K_{\pi(i)}/K_{\pi(i)-1}$

G. Czédli, E.T. Schmidt (2011): $\exists ! \pi$ as above.

subnormal = \triangleleft^* . SNSub(G), a poset

H. Wielandt 1939: if $\exists \vec{H}$, then SNSub(G) is a sublattice of Sub(G). Not hard: then SNSub(G) is lower semimodular.

$$\vec{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\}$$

$$\vec{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\}$$

G. Grätzer, J.B. Nation (2010): $\exists \pi, H_i/H_{i-1} \searrow K_{\pi(i)}/K_{\pi(i)-1}$

G. Czédli, E.T. Schmidt (2011): $\exists ! \pi$ as above.

subnormal = \triangleleft^* . SNSub(G), a poset

H. Wielandt 1939: if $\exists \vec{H}$, then SNSub(G) is a sublattice of Sub(G). Not hard: then SNSub(G) is lower semimodular.

Define $CSL_G(\vec{H}, \vec{K}) := (\{H_i \cap K_j : i, j \in \{0, ..., n\}\}; \subseteq)$ *http://www.math.u-szeged.hu/~czedli/ 2'/18'

Q: how many such lattices are for a given length n?

Q: how many such lattices are for a given length n?

O: $CSL_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Q: how many such lattices are for a given length n?

O: $CSL_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Prop: Assume $k = p_1 \dots p_n$ and L is lower semimodular, meetgenerated by two chains, and length(L) = n. Then the cyclic C_k group of order k has \vec{H}, \vec{K} with $L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K})$.

Q: how many such lattices are for a given length n?

O: $CSL_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Prop: Assume $k = p_1 \dots p_n$ and L is lower semimodular, meetgenerated by two chains, and length(L) = n. Then the cyclic C_k group of order k has \vec{H}, \vec{K} with $L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K})$.

Describes what we want to count.

By duality,

Q: how many such lattices are for a given length n?

O: $CSL_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Prop: Assume $k = p_1 \dots p_n$ and L is lower semimodular, meetgenerated by two chains, and length(L) = n. Then the cyclic C_k group of order k has \vec{H}, \vec{K} with $L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K})$.

Describes what we want to count.

By duality, it suffices to count **slim** (= join-generated by two chains) **semimodular** lattices of length n, asymptotically. *http://www.math.u-szeged.hu/~czedli/ Lattice Theory + Combinatorics Czédli* at al, March 15, 2012 4'/16'

- 1. Describe these lattices (Cz-Sch) \rightarrow **permutations**!
- 2. Count permutations (Cz-O-U).

Ρ

Lattice Theory + Combinatorics Czédli* at al, March 15, 2012 4'/16'

- 1. Describe these lattices $(Cz-Sch) \rightarrow permutations!$
- 2. Count permutations (Cz-O-U).

Part I: description by permutations.

Thm (Cz-Sch): Slim semimodular (planar) **diagrams** \leftrightarrow permutations.

Need: a pair of reciprocal bijections.

The locomotive as a math. tool Czédli* at al, March 15, 2012 6'/14' $D \mapsto \pi$ by a **locomotive**. $\pi \mapsto D$ by quotient join-semilattice.

Segments

Czédli* at al, March 15, 2012

The segments of π are {1}, {2}, {3,4,5,6}, {7,8}.

Lemma: $L(\pi) \cong L(\tau)$ iff π and τ are "sectionally inverse or equal", denoted by $\pi \sim \tau$.

It suffices to determine $|S_n/ \sim |$, asymptotically.

```
*http://www.math.u-szeged.hu/~czedli/
```

Treatment for the involutions Czédli* at al, March 15, 2012 $A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements:

12'/8'

Treatment for the involutions Czédli* at al, March 15, 2012 $A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2i}$ ways.

12'/8'

The image of a_1 :

Treatment for the involutions Czédli* at al, March 15, 2012 $A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

12'/8'

```
The image of a_1: 2j - 1 ways.
```

 π (first element distinct from a_1 , $a_{\pi(1)}$):

Treatment for the involutions Czédli* at al, March 15, 2012 12'/8' $A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1 : 2j - 1 ways.

 π (first element distinct from a_1 , $a_{\pi(1)}$): 2j-3 ways. Etc. Hence

Treatment for the involutions Czédli* at al, March 15, 2012 12'/8' $A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1 : 2j - 1 ways.

 π (first element distinct from a_1 , $a_{\pi(1)}$): 2j-3 ways. Etc. Hence $\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!}$ Treatment for the involutions Czédli* at al, March 15, 2012 12'/8' $A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1 : 2j - 1 ways.

 $\pi(\text{first element distinct from } a_1, a_{\pi(1)}): 2j-3 \text{ ways. Etc. Hence}$ $\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} {n \choose 2j} (2j-1)(2j-3)(2j-5) \dots =$

Treatment for the involutions Czédli* at al, March 15, 2012 $A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

12'/8'

The image of a_1 : 2j - 1 ways.

 $\pi (\text{first element distinct from } a_1, a_{\pi(1)}): 2j-3 \text{ ways. Etc. Hence}$ $\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} {n \choose 2j} (2j-1)(2j-3)(2j-5) \dots =$ $\frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{n!}{(n-2j)! \cdot (2j)!} \cdot \frac{(2j)!}{2^{j} \cdot j!} =$

Treatment for the involutions Czédli* at al, March 15, 2012 $A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}.$

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1 : 2j - 1 ways.

 π (first element distinct from a_1 , $a_{\pi(1)}$): 2j-3 ways. Etc. Hence

$$\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} {n \choose 2j} (2j-1)(2j-3)(2j-5) \dots = \\ \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{n!}{(n-2j)! \cdot (2j)!} \cdot \frac{(2j)!}{2^j \cdot j!} = \\ \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

*http://www.math.u-szeged.hu/~czedli/

12'/8'

14'/6'

$$\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

In \sum' ,

$$\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

In \sum'' ,

$$\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

In Σ'' , each denominator is at least $2^{n/4}$ and there are fewer than n summands, so $\Sigma'' \leq n \cdot 2^{-n/4} \to 0$.

$$\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

In Σ'' , each denominator is at least $2^{n/4}$ and there are fewer than n summands, so $\Sigma'' \leq n \cdot 2^{-n/4} \rightarrow 0$. Thus,

$$\lim_{n \to \infty} \frac{|A_0(n)|}{n!} = 0.$$

So, involutions can be disregarded.

$$\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.$$

In Σ'' , each denominator is at least $2^{n/4}$ and there are fewer than n summands, so $\Sigma'' \leq n \cdot 2^{-n/4} \rightarrow 0$. Thus,

$$\lim_{n \to \infty} \frac{|A_0(n)|}{n!} = 0.$$

So, involutions can be disregarded.

Large segment: consists of at least 3 elements. *http://www.math.u-szeged.hu/~czedli/ Focus on large segments Czédli* at al, March 15, 2012

If π has exactly k segments onto which the restriction of π is NOT an involution,

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π .

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

 $S_n =$

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} +$$

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} +$$

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$.

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$. We are going to show that $|B(n)/n!| \rightarrow 0$.

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$. We are going to show that $|B(n)/n!| \rightarrow 0$. Then, since this majorizes the tail, tail $\rightarrow 0$. From

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$. We are going to show that $|B(n)/n!| \rightarrow 0$. Then, since this majorizes the tail, tail $\rightarrow 0$. From $|A_0(n)|/n! \rightarrow 0$,

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$. We are going to show that $|B(n)/n!| \rightarrow 0$. Then, since this majorizes the tail, tail $\rightarrow 0$. From $|A_0(n)|/n! \rightarrow 0$, $|B(n)/n!| \rightarrow 0$, and

If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim -block of π is 2^k -element. Let $A_k(n)$ be the set of all these π . $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \dots = A_0(n) \cup A_1(n) \cup B(n).$$
(1)

The number of \sim -blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \underbrace{\frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots}_{tail}.$$
 (2)

We already know that $|A_0(n)|/n! \rightarrow 0$. We are going to show that $|B(n)/n!| \rightarrow 0$. Then, since this majorizes the tail, tail $\rightarrow 0$. From $|A_0(n)|/n! \rightarrow 0$, $|B(n)/n!| \rightarrow 0$, and (1) we obtain $|A_1(n)/n!| \rightarrow 1$. Hence $|A_1(n)/(2n!)| \rightarrow 1/2$ Finally, $|A_0(n)|/n! \rightarrow 0$, tail $\rightarrow 0$, and $|A_1(n)/(2n!)| \rightarrow 1/2$ give the desired $|S_n/\sim|/n! \rightarrow 1/2$.

More than one large segments Czédli* at al, March 15, 2012 18'/2'Suppose $\pi \in B(n)$. Then there are at least two large π -segments. More than one large segments Czédli* at al, March 15, 2012 18'/2'

Suppose $\pi \in B(n)$. Then there are at least two large π -segments. We define the *pivot element* $p(\pi)$ of π as the greatest element of the leftmost large π -segment. Suppose $\pi \in B(n)$. Then there are at least two large π -segments. We define the *pivot element* $p(\pi)$ of π as the greatest element of the leftmost large π -segment. Then $3 \le p(\pi) \le n - 3$ since there are at least two large π -segments. Suppose $\pi \in B(n)$. Then there are at least two large π -segments. We define the *pivot element* $p(\pi)$ of π as the greatest element of the leftmost large π -segment. Then $3 \le p(\pi) \le n - 3$ since there are at least two large π -segments.

Both the intervals $[1, p(\pi)] = \{1, \ldots, p(\pi)\}$ and $[p(\pi) + 1, n]$ are unions of π -segments, whence both are closed with respect to π . Hence if we denote the restrictions of π to these intervals by $\lambda = \pi \rceil_{[1,p(\pi)]}$ and $\rho = \pi \rceil_{[p(\pi)+1,n]}$, then π is determined by λ and ρ . Suppose $\pi \in B(n)$. Then there are at least two large π -segments. We define the *pivot element* $p(\pi)$ of π as the greatest element of the leftmost large π -segment. Then $3 \le p(\pi) \le n - 3$ since there are at least two large π -segments.

Both the intervals $[1, p(\pi)] = \{1, \ldots, p(\pi)\}$ and $[p(\pi) + 1, n]$ are unions of π -segments, whence both are closed with respect to π . Hence if we denote the restrictions of π to these intervals by $\lambda = \pi \rceil_{[1,p(\pi)]}$ and $\rho = \pi \rceil_{[p(\pi)+1,n]}$, then π is determined by λ and ρ .

Since $\lambda \in S_{p(\pi)}$, there are at most $p(\pi)$! many such λ . (In fact, there are much fewer.) Similarly, there are at most $(n - p(\pi))$! many ρ .

$$\binom{n}{3} \le \binom{n}{4} \le \dots \le \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \ge \binom{n}{\lceil n/2 \rceil + 1} \ge \dots \ge \binom{n}{n-3}$$

$$\frac{|B(n)|}{n!} \le \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! =$$

$$\binom{n}{3} \le \binom{n}{4} \le \dots \le \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \ge \binom{n}{\lceil n/2 \rceil + 1} \ge \dots \ge \binom{n}{n-3}$$

$$\frac{|B(n)|}{n!} \le \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} =$$

$$\binom{n}{3} \le \binom{n}{4} \le \dots \le \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \ge \binom{n}{\lceil n/2 \rceil + 1} \ge \dots \ge \binom{n}{n-3}$$

$$\frac{|B(n)|}{n!} \le \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} {\binom{n}{k}}^{-1}$$

$$\binom{n}{3} \le \binom{n}{4} \le \dots \le \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \ge \binom{n}{\lceil n/2 \rceil + 1} \ge \dots \ge \binom{n}{n-3}$$

$$\frac{|B(n)|}{n!} \le \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} {\binom{n}{k}}^{-1}$$

$$\leq^* \sum_{k=3}^{n-3} {n \choose 3}^{-1} \leq n \cdot \frac{6}{n(n-1)(n-2)} \to 0.$$

The last steps

Taking the well-known fact

$$\binom{n}{3} \le \binom{n}{4} \le \dots \le \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \ge \binom{n}{\lceil n/2 \rceil + 1} \ge \dots \ge \binom{n}{n-3}$$

at \leq^* into account and counting the permutations according to their pivot elements, we obtain:

$$\frac{|B(n)|}{n!} \le \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} {n \choose k}^{-1}$$
$$\le^* \sum_{k=3}^{n-3} {n \choose 3}^{-1} \le n \cdot \frac{6}{n(n-1)(n-2)} \to 0. \quad \text{Q.E.D.}$$