Lattice polynomial functions and their use in qualitative decision making AAA83

Miguel Couceiro Jointly with D. Dubois, J.-L. Marichal, T. Waldhauser, ...

University of Luxembourg

March 2012

Main Problem: Model preference!

Main Problem: Model preference!

Model: *R* on $X_1 \times \cdots \times X_n$ is represented by $f: X_1 \times \cdots \times X_n \to X$:

$$\mathbf{x}R\mathbf{y} \iff f(\mathbf{x}) \leq f(\mathbf{y})$$

Main Problem: Model preference!

Model: *R* on $X_1 \times \cdots \times X_n$ is represented by $f: X_1 \times \cdots \times X_n \to X$:

$$\mathbf{x}R\mathbf{y} \iff f(\mathbf{x}) \leq f(\mathbf{y})$$

Limitation: The role of local preferences is not explicit!

Aggregation: $x_1, \ldots, x_n \longrightarrow y = A(x_1, \ldots, x_n)$

Let X be a scale (bounded chain).

An aggregation function on X is a mapping $A: X^n \to X$ such that:

1 A is order-preserving: for every $\mathbf{x}, \mathbf{y} \in X^n$

$$\mathbf{x} \leq \mathbf{y} \implies A(\mathbf{x}) \leq A(\mathbf{y})$$

A preserves the boundaries:

$$\inf_{\mathbf{x}\in X^n} A(\mathbf{x}) = \inf X \text{ and } \sup_{\mathbf{x}\in X^n} A(\mathbf{x}) = \sup X.$$

Traditionally: X is a real interval $\mathbb{I} \subseteq \mathbb{R}$, e.g., $\mathbb{I} = [0, 1]$.

Numerical representation of relations: $f: X_1 \times \cdots \times X_n \to \mathbb{I} \subseteq \mathbb{R}$:

$$\mathbf{x}R\mathbf{y} \iff f(\mathbf{x}) \leq f(\mathbf{y})$$

DM: Preference on criteria *i* is represented by a local utility function

$$\varphi_i\colon X_i\to \mathbb{I}.$$

Preference on $X_1 \times \cdots \times X_n$ is represented by an overall utility function:

$$F(x_1,\ldots,x_n):=A(\varphi_1(x_1),\ldots,\varphi_n(x_n))$$

where $A: \mathbb{I}^n \to \mathbb{I}$ is an aggregation function.

Examples of aggregation functions:

() Arithmetic means: For $\mathbf{x} \in \mathbb{I}^n$,

$$AM(\mathbf{x}) := \frac{1}{n} \sum_{1 \le i \le n} x_i$$

2 Weighted arithmetic means: For $\mathbf{x} \in \mathbb{I}^n$ and $\sum w_i = 1$,

$$WAM(\mathbf{x}) := \sum_{1 \le i \le n} w_i x_i$$

③ Choquet integrals: For $\mathbf{x} \in \mathbb{I}^n$,

$$C(\mathbf{x}) := \sum_{I \subseteq \{1, \dots, n\}} a_I \cdot \bigwedge_{i \in I} x_i$$

In the qualitative approach:

The underlying sets X_1, \ldots, X_n and X are finite chains (ordinal scales),

e.g., $X = \{$ very bad, bad, satisfactory, good, very good $\}$

QDM: Preference relation on X_i is represented by

$$\varphi_i\colon X_i\to X$$
.

Preference relation on $X_1 \times \cdots \times X_n$ is represented by

$$F(x_1,\ldots,x_n):=A(\varphi_1(x_1),\ldots,\varphi_n(x_n))$$

where $A: X^n \to X$ is an aggregation function.

Let X be a chain with least and greatest elements 0 and 1, respectively.

- A capacity is a mapping $v: 2^{[n]} \to X$, $[n] = \{1, \ldots, n\}$, such that
 - $v(I) \leq v(J)$ whenever $I \subseteq J$,
 - 2 $v(\emptyset) = 0$ and v([n]) = 1.

Order simplexes of X^n

Let σ be a permutation on $[n] = \{1, \ldots, n\}$ $(\sigma \in S_n)$

$$X_{\sigma}^{n} = \left\{ \mathbf{x} = (x_{1}, \dots, x_{n}) \in X^{n} : x_{\sigma(1)} \leqslant \dots \leqslant x_{\sigma(n)} \right\}$$

2! = 2 permutations (2 simplexes)

The (discrete) Sugeno integral on X w.r.t. v is defined by

$$\mathcal{S}_{\mathbf{v}}(\mathbf{x}) := \bigvee_{i \in [n]} \mathbf{v}(\{\sigma(i), \dots, \sigma(n)\}) \wedge x_{\sigma(i)}$$

for every $\mathbf{x} \in X_{\sigma}^{n} = \{(x_{1}, \dots, x_{n}) \in X^{n} : x_{\sigma(1)} \leqslant \dots \leqslant x_{\sigma(n)}\}$

Example

If
$$x_3 \leqslant x_1 \leqslant x_2$$
, then $x_{\sigma(1)} = x_3$, $x_{\sigma(2)} = x_1$, $x_{\sigma(3)} = x_2$, and

$$\mathcal{S}_{\nu}(x_1, x_2, x_3) = (\underbrace{\nu(\{1, 2, 3\})}_{=1} \land x_3) \lor (\nu(\{1, 2\}) \land x_1) \lor (\nu(\{2\}) \land x_2)$$

Qualitative decision making **QDM**

Setting:

- *n* criteria on finite chains X_1, \ldots, X_n
- @ scores in a common finite chain X by local utility functions

$$\varphi_i\colon X_i\to X$$

We will assume that each φ_i is **order-preserving**.

③ Preference relation on $X_1 \times \cdots \times X_n$ is represented by

$$F(x_1,\ldots,x_n):=A(\varphi_1(x_1),\ldots,\varphi_n(x_n))$$

where $A: X^n \to X$ is a Sugeno integral. We shall refer to these overall utility functions as Sugeno utility functions.

1 Preliminaries: Sugeno integrals as lattice polynomial functions.

Ocharacterizations of lattice polynomial functions.

1 Preliminaries: Sugeno integrals as lattice polynomial functions.

- **2** Characterizations of lattice polynomial functions.
- **③** Generalization of polynomial functions: Sugeno utility functions.
- Sugeno utility functions: characterizations and factorizations.

1 Preliminaries: Sugeno integrals as lattice polynomial functions.

- **2** Characterizations of lattice polynomial functions.
- **③** Generalization of polynomial functions: Sugeno utility functions.
- Sugeno utility functions: characterizations and factorizations.
- S Axiomatic approach to qualitative decision-making **QDM**.
- Further research directions and open problems.

Preliminaries

Let X be a distributive (finite) lattice with

- least and greatest elements 0 and 1, respectively.

A (lattice) polynomial function (on X) is any map $p: X^n \to X$, $n \ge 1$, obtainable by finitely many applications of the rules:

- The projections x → x_i, i ∈ [n], and the constant functions x → c, c ∈ X, are polynomial functions.
- ② If $f : X^n \to X$ and $g : X^n \to X$ are polynomial functions, then $f \land g$ and $f \lor g$ are polynomial functions.

Example

$$median(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_3 \land x_1)$$

A function $f: X^n \to X$ has a disjunctive normal form (DNF) if

$$f(\mathbf{x}) = \bigvee_{I \subseteq [n]} (a_I \wedge \bigwedge_{i \in I} x_i).$$

Representations: Disjunctive Normal Form

A function $f: X^n \to X$ has a disjunctive normal form (**DNF**) if

$$f(\mathbf{x}) = \bigvee_{I \subseteq [n]} (a_I \wedge \bigwedge_{i \in I} x_i).$$

Proposition (Goodstein'67)

A function $p: X^n \to X$ is a polynomial function **iff** it has the **DNF**:

$$p(\mathbf{x}) = \bigvee_{I \subseteq [n]} \left(p(\mathbf{1}_I) \land \bigwedge_{i \in I} x_i \right)$$

where $\mathbf{1}_{I}$ denotes the "characteristic tuple" of $I \subseteq [n]$.

Sugeno integrals as lattice polynomial functions

The Sugeno integral on a chain X w.r.t. $v: 2^{[n]} \rightarrow X$ is defined by

$$\mathcal{S}_{\mathbf{v}}(\mathbf{x}) := \bigvee_{i \in [n]} \mathbf{v}(\{\sigma(i), \dots, \sigma(n)\}) \wedge \mathbf{x}_{\sigma(i)}$$

for every $\mathbf{x} \in X_{\sigma}^n = \big\{ (x_1, \dots, x_n) \in X^n \ : \ x_{\sigma(1)} \leqslant \dots \leqslant x_{\sigma(n)} \big\}.$

Sugeno integrals as lattice polynomial functions

The Sugeno integral on a chain X w.r.t. $v: 2^{[n]} \rightarrow X$ is defined by

$$\mathcal{S}_{\mathbf{v}}(\mathbf{x}) := \bigvee_{i \in [n]} \mathbf{v}(\{\sigma(i), \dots, \sigma(n)\}) \wedge \mathbf{x}_{\sigma(i)}$$

for every $\mathbf{x} \in X_{\sigma}^n = \big\{ (x_1, \dots, x_n) \in X^n \ : \ x_{\sigma(1)} \leqslant \dots \leqslant x_{\sigma(n)} \big\}.$

Theorem (Marichal)

A function $q: X^n \to X$ is the Sugeno integral \mathcal{S}_v iff

$$q(\mathbf{x}) = \bigvee_{I \subseteq [n]} \left(v(I) \land \bigwedge_{i \in I} x_i \right).$$

Since, $q(\mathbf{1}_I) = v(I)$, and $v(\emptyset) = 0$ and v([n]) = 1, Sugeno integrals coincide with **idempotent** polynomial functions: q(x, ..., x) = x.

General properties of polynomial functions

Fact

Every polynomial function (in part., Sugeno integral) is order-preserving.

However...

The function f(0) = f(a) = 0 and f(1) = 1 is order-preserving on $\{0, a, 1\}$, **but** it is not a polynomial function, hence not a Sugeno integral!

Median decomposability (Marichal)

For $c \in X$ and $i \in [n]$, set $\mathbf{x}_i^c = (x_1, \dots, x_{i-1}, c, x_{i+1}, \dots, x_n)$. A function $f: X^n \to X$ is median decomposable if for each $i \in [n]$

$$f(\mathbf{x}) = \text{median} \left(f(\mathbf{x}_i^0), x_i, f(\mathbf{x}_i^1) \right), \text{ for every } \mathbf{x} \in X^n.$$

Median decomposability (Marichal)

For $c \in X$ and $i \in [n]$, set $\mathbf{x}_i^c = (x_1, \dots, x_{i-1}, c, x_{i+1}, \dots, x_n)$. A function $f: X^n \to X$ is median decomposable if for each $i \in [n]$

$$f(\mathbf{x}) = \text{median} \left(f(\mathbf{x}_i^0), x_i, f(\mathbf{x}_i^1) \right), \text{ for every } \mathbf{x} \in X^n.$$

Characterization of polynomial functions

Fact

Every median decomposable function is order-preserving.

Characterization of polynomial functions

Fact

Every median decomposable function is order-preserving.

Theorem (Marichal)

A function $p: X^n \to X$ is

() a polynomial function **iff** it is median decomposable.

2 a Sugeno integral iff it is idempotent and median decomposable.

General criterion (C. & Marichal)

Let C be a class of functions such that

- (i) the unary members of C are polynomial functions;
- (ii) any $g: X \to X$ obtained from $f: X^n \to X \in C$ by fixing n-1 arguments is in C.

Then C is a class of polynomial functions.

Let $\mathbf{X} := X_1 \times \cdots \times X_n$, where each X_i is a finite distributive lattice.

Let $\mathbf{X} := X_1 \times \cdots \times X_n$, where each X_i is a finite distributive lattice.

Definition

We say that $f: \mathbf{X} \to X$ is a pseudo-polynomial function if

$$f(\mathbf{x}) = p(\varphi_1(x_1), \ldots, \varphi_n(x_n)),$$

where $p: X^n \to X$ is polynomial function and each $\varphi_i: X_i \to X$ satisfies

$$\varphi_i(0) \le \varphi_i(x_i) \le \varphi_i(1).$$
 (BC)

Fact: We can always choose *p* to be a Sugeno integral!

A function $f: \mathbf{X} \to X$ is a Sugeno utility function if

$$f(\mathbf{x}) = q(\varphi_1(x_1), \ldots, \varphi_n(x_n)),$$

where q is a Sugeno integral and each $\varphi_i \colon X_i \to X$ is order-preserving.

A function $f: \mathbf{X} \to X$ is a Sugeno utility function if

$$f(\mathbf{x}) = q(\varphi_1(x_1), \ldots, \varphi_n(x_n)),$$

where q is a Sugeno integral and each $\varphi_i \colon X_i \to X$ is order-preserving.

Proposition (C. & Waldhauser)

Order-preserving pseudo-polynomial functions are Sugeno utility functions.

Problems...

Consider $f: \mathbf{X} \to X$.

Problem 1: Determine whether *f* is pseudo-polynomial function.

Problem 2: Find all possible factorizations $f = p(\varphi_1, \ldots, \varphi_n)$.

Problems...

Consider $f: \mathbf{X} \to X$.

Problem 1: Determine whether *f* is pseudo-polynomial function.

Problem 2: Find all possible factorizations $f = p(\varphi_1, \ldots, \varphi_n)$.

Remark:

Problems 1 and 2 were solved (C. & Marichal) when $X_1 = \cdots = X_n$ and

$$f = p(\varphi(x_1), \ldots, \varphi(x_n)).$$

Such model is pertaining to **QDM under uncertainty**.

Properties of pseudo-polynomial functions (I)

We say that $f: \mathbf{X} \to X$ is pseudo-median decomposable if for each $i \in [n]$ there exists $\varphi_i: X_i \to X$ such that

$$f(\mathbf{x}) = ext{median} \left(f(\mathbf{x}_i^0), \varphi_i(x_i), f(\mathbf{x}_i^1) \right), ext{ for all } \mathbf{x} \in \mathbf{X}.$$

Properties of pseudo-polynomial functions (I)

We say that $f: \mathbf{X} \to X$ is pseudo-median decomposable if for each $i \in [n]$ there exists $\varphi_i: X_i \to X$ such that

$$f(\mathbf{x}) = \text{median}\left(f(\mathbf{x}_i^0), \varphi_i(x_i), f(\mathbf{x}_i^1)\right), \text{ for all } \mathbf{x} \in \mathbf{X}.$$

Proposition (C. & Waldhauser)

If f is pseudo-median decomposable w.r.t. φ_i , then $f = p_f(\varphi_1, \ldots, \varphi_n)$

where
$$p_f(\mathbf{x}) = \bigvee_{I \subseteq [n]} (f(\widehat{\mathbf{1}}_I) \land \bigwedge_{i \in I} x_i).$$

Proposition (C. & Waldhauser)

If f is pseudo-median decomposable w.r.t. φ_i , then $f = p_f(\varphi_1, \ldots, \varphi_n)$

where
$$p_f(\mathbf{x}) = \bigvee_{I \subseteq [n]} (f(\widehat{\mathbf{1}}_I) \land \bigwedge_{i \in I} x_i).$$

Theorem (C. & Waldhauser)

f is a pseudo-polynomial function **iff** it is pseudo-median decomposable.

Embedding a distributive lattice X into a power-set Y

Embedding a distributive lattice X into a power-set Y

Closure and interior operators on Y

closure operator:
$$\operatorname{cl}(b) = \bigwedge_{\substack{a \in X \\ a \ge b}} a$$

interior operator: int
$$(b) = \bigvee_{\substack{a \in X \\ a \leq b}} a$$

Closure and interior operators on Y

closure operator:
$$\operatorname{cl}(b) = \bigwedge_{\substack{a \in X \\ a \ge b}} a$$

interior operator: int
$$(b) = \bigvee_{\substack{a \in X \\ a \leq b}} a$$

$$\label{eq:cl} \begin{array}{l} \mathsf{cl}\left(\overline{D}\right) = \mathsf{cl}\left(\overline{N}\right) = \mathsf{cl}\left(\overline{G}\right) = V \\ \\ \mathsf{int}\left(\overline{D}\right) = N, \;\; \mathsf{int}\left(\overline{N}\right) = D, \;\; \mathsf{int}\left(\overline{G}\right) = B \end{array}$$

Given $f: \mathbf{X} \to X$ and $i \in [n]$, define functions $\Phi_i^-, \Phi_i^+: X_i \to X$ by

$$\Phi_i^-(\mathbf{a}_i) := \bigvee_{\mathbf{x}_i = \mathbf{a}_i} \operatorname{cl}(f(\mathbf{x}) \wedge \overline{f(\mathbf{x}_i^0)}),$$

$$\Phi_i^+(\mathbf{a}_i) := \bigwedge_{\mathbf{x}_i = \mathbf{a}_i} \operatorname{int}(f(\mathbf{x}) \vee \overline{f(\mathbf{x}_i^1)}).$$

Given $f: \mathbf{X} \to X$ and $i \in [n]$, define functions $\Phi_i^-, \Phi_i^+: X_i \to X$ by

$$\Phi_i^-(\mathbf{a}_i) := \bigvee_{\mathbf{x}_i = \mathbf{a}_i} \operatorname{cl}(f(\mathbf{x}) \wedge \overline{f(\mathbf{x}_i^0)}),$$

$$\Phi_i^+(\mathbf{a}_i) := \bigwedge_{\mathbf{x}_i = \mathbf{a}_i} \operatorname{int}(f(\mathbf{x}) \vee \overline{f(\mathbf{x}_i^1)}).$$

Proposition (C. & Waldhauser)

If $f: \mathbf{X} \to X$ is a pseudo-polynomial function, **then**

$$f = p_f(\varphi_1, \ldots, \varphi_n)$$
, for $\varphi_i \in \{\Phi_i^-, \Phi_i^+\}$.

Characterization of pseudo-polynomial functions

Fact

If f is a pseudo-polynomial function, **then** it satisfies

$$f(\mathbf{x}_i^0) \le f(\mathbf{x}) \le f(\mathbf{x}_i^1). \tag{BC}_n$$

Characterization of pseudo-polynomial functions

Fact

If f is a pseudo-polynomial function, **then** it satisfies

$$f(\mathbf{x}_i^0) \le f(\mathbf{x}) \le f(\mathbf{x}_i^1). \tag{BC}_n$$

Theorem (C. & Waldhauser)

The function f is a pseudo-polynomial function iff

② for every
$$i\in [n]$$
 , $\Phi_i^-\leq \Phi_i^+$.

Theorem (C. & Waldhauser): For a finite chain X...

 $f: \mathbf{X} \to X$ is pseudo-polynomial **iff** it satisfies (BC_n) and

$$f\left(\mathbf{x}_{i}^{0}
ight) < f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}
ight) ext{ and } f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}
ight) < f\left(\mathbf{y}_{i}^{1}
ight) \implies f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}
ight) \leq f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}
ight)$$

Theorem (C. & Waldhauser)

A function $\varphi_i \colon X_i \to X$ satisfying (BC) appears in a factorization of f iff

$$\Phi_i^- \leq \varphi_i \leq \Phi_i^+.$$

Finding all polynomial functions

Let $f: \mathbf{X} \to X$ and $\varphi_i: X_i \to X$ be given as before.

We define the polynomial functions p^- , p^+ : $Y^n \to X$ by

$$p^{-}(\mathbf{y}) := \bigvee_{I \subseteq [n]} (c_{I}^{-} \land \bigwedge_{i \in I} x_{i}) \text{ with } c_{I}^{-} := \mathsf{cl}(f(\widehat{\mathbf{1}}_{I}) \land \bigwedge_{i \notin I} \overline{\varphi_{i}(0)}),$$
$$p^{+}(\mathbf{y}) := \bigvee_{I \subseteq [n]} (c_{I}^{+} \land \bigwedge_{i \in I} x_{i}) \text{ with } c_{I}^{+} := \mathsf{int}(f(\widehat{\mathbf{1}}_{I}) \lor \bigvee_{i \in I} \overline{\varphi_{i}(1)}).$$

Finding all polynomial functions

Let $f: \mathbf{X} \to X$ and $\varphi_i: X_i \to X$ be given as before.

We define the polynomial functions p^- , p^+ : $Y^n \to X$ by

$$p^{-}(\mathbf{y}) := \bigvee_{I \subseteq [n]} (c_{I}^{-} \land \bigwedge_{i \in I} x_{i}) \text{ with } c_{I}^{-} := \operatorname{cl}(f(\widehat{\mathbf{1}}_{I}) \land \bigwedge_{i \notin I} \overline{\varphi_{i}(0)}),$$
$$p^{+}(\mathbf{y}) := \bigvee_{I \subseteq [n]} (c_{I}^{+} \land \bigwedge_{i \in I} x_{i}) \text{ with } c_{I}^{+} := \operatorname{int}(f(\widehat{\mathbf{1}}_{I}) \lor \bigvee_{i \in I} \overline{\varphi_{i}(1)}).$$

Theorem (C. & Waldhauser)

For a polynomial function $p(\mathbf{y}) = \bigvee_{I \subseteq [n]} (c_I \wedge \bigwedge_{i \in I} x_i)$ we have $f = p(\varphi_1, \dots, \varphi_n)$ if and only if $c_I^- \leq c_I \leq c_I^+$ holds for all $I \subseteq [n]$.

Main Problems

- Model preference relations.
- Axiomatize the chosen model.

Main Problems

- Model preference relations.
- Axiomatize the chosen model.

Question: What is a preference relation?

Let $\mathbf{X} := X_1 \times \cdots \times X_n$, where each X_i is a finite chain.

Let $\mathbf{X} := X_1 \times \cdots \times X_n$, where each X_i is a finite chain.

A weak order on **X** is a relation $\preceq \subseteq \mathbf{X}^2$ that is:

1 reflexive:
$$\forall x \in X : x \leq x$$
,

- **2** transitive: $\forall x, y, z \in X : x \leq y, y \leq z \implies x \leq z$, and
- **(**) complete: $\forall x, y \in X : x \leq y$ or $y \leq x$.

Let $\mathbf{X} := X_1 \times \cdots \times X_n$, where each X_i is a finite chain.

A weak order on **X** is a relation $\preceq \subseteq \mathbf{X}^2$ that is:

1 reflexive:
$$\forall x \in X : x \leq x$$
,

2 transitive: $\forall x, y, z \in X : x \leq y, y \leq z \implies x \leq z$, and

3 complete:
$$\forall x, y \in X : x \leq y$$
 or $y \leq x$.

Note: Weak orders are not necessarily antisymmetric:

$$\forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : \mathbf{x} \leq \mathbf{y}, \ \mathbf{y} \leq \mathbf{x} \implies \mathbf{x} = \mathbf{y}$$
(AS)

The **indifference relation** \sim associated with \preceq is defined by:

 $\mathbf{y}\sim\mathbf{x} \ \text{iff} \ \mathbf{x}\preceq\mathbf{y} \ \text{and} \ \mathbf{y}\preceq\mathbf{x}.$

A preference relation on **X** is a weak order \leq that satisfies

Pareto condition: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : \forall i \in [n], x_i \leq_i y_i \implies \mathbf{x} \leq \mathbf{y}.$

A preference relation on **X** is a weak order \leq that satisfies

Pareto condition: $\forall x, y \in X : \forall i \in [n], x_i \leq_i y_i \implies x \leq y$.

Fact

The rank function $r: \mathbf{X} \to \mathbf{X} / \sim$ of \leq is order-preserving and:

$$\mathbf{x} \leq \mathbf{y} \iff r(\mathbf{x}) \leq r(\mathbf{y})$$
.

A preference relation on **X** is a weak order \leq that satisfies

Pareto condition: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : \forall i \in [n], x_i \leq_i y_i \implies \mathbf{x} \leq \mathbf{y}.$

Fact

The rank function $r: \mathbf{X} \to \mathbf{X} / \sim$ of \leq is order-preserving and:

$$\mathbf{x} \leq \mathbf{y} \iff r(\mathbf{x}) \leq r(\mathbf{y})$$
.

Consequence:

Preference relations are exactly those representable by order-preserving functions.

Model: Preference relations are represented by Sugeno utility functions.

Model: Preference relations are represented by Sugeno utility functions.

Theorem (C. & Dubois & Waldhauser)

A relation \preceq on **X** is representable by a Sugeno utility function iff

 $\bullet \leq$ is a preference relation

$$\textbf{2} \leq \text{satisfies:} \quad \forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : \mathbf{x}_i^0 \prec \mathbf{x}_i^a \text{ and } \mathbf{y}_i^a \prec \mathbf{y}_i^1 \implies \mathbf{x}_i^a \preceq \mathbf{y}_i^a.$$

Theorem: For a finite chain X...

 $f: \mathbf{X} \to X$ is a Sugeno utility function **iff** it is order-preserving and

$$f\left(\mathbf{x}_{i}^{0}\right) < f\left(\mathbf{x}_{i}^{a_{i}}\right) \text{ and } f\left(\mathbf{y}_{i}^{a_{i}}\right) < f\left(\mathbf{y}_{i}^{1}\right) \implies f\left(\mathbf{x}_{i}^{a_{i}}\right) \le f\left(\mathbf{y}_{i}^{a_{i}}\right) \qquad (*)$$

Theorem: For a finite chain X...

 $f: \mathbf{X} \to X$ is a Sugeno utility function **iff** it is order-preserving and

$$f\left(\mathbf{x}_{i}^{0}\right) < f\left(\mathbf{x}_{i}^{a_{i}}\right) \text{ and } f\left(\mathbf{y}_{i}^{a_{i}}\right) < f\left(\mathbf{y}_{i}^{1}\right) \implies f\left(\mathbf{x}_{i}^{a_{i}}\right) \le f\left(\mathbf{y}_{i}^{a_{i}}\right) \qquad (*)$$

If \leq is a preference relation satisfying:

$$orall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \, \mathbf{x}_i^0 \prec \mathbf{x}_i^a \, ext{ and } \, \mathbf{y}_i^a \prec \mathbf{y}_i^1 \, \Longrightarrow \, \mathbf{x}_i^a \preceq \mathbf{y}_i^a,$$

then *r* is a Sugeno utility function representing \leq .

Conversely...

Theorem: For a finite chain X...

 $f: \mathbf{X} \to X$ is a Sugeno utility function **iff** it is order-preserving and

$$f\left(\mathbf{x}_{i}^{0}\right) < f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}\right) \text{ and } f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}\right) < f\left(\mathbf{y}_{i}^{1}\right) \implies f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}\right) \le f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}\right) \qquad (*)$$

Conversely, suppose \leq is represented by a Sugeno utility function *f*.

Conversely...

Theorem: For a finite chain X...

 $f: \mathbf{X} \to X$ is a Sugeno utility function **iff** it is order-preserving and

$$f\left(\mathbf{x}_{i}^{0}\right) < f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}\right) \text{ and } f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}\right) < f\left(\mathbf{y}_{i}^{1}\right) \implies f\left(\mathbf{x}_{i}^{\mathsf{a}_{i}}\right) \le f\left(\mathbf{y}_{i}^{\mathsf{a}_{i}}\right) \qquad (*)$$

Conversely, suppose \leq is represented by a Sugeno utility function *f*.

Then we may assume that *f* is surjective.

Hence $r = \alpha \circ f$ for some order-isomorphism α .

Conversely...

Theorem: For a finite chain X...

 $f: \mathbf{X} \to X$ is a Sugeno utility function **iff** it is order-preserving and

$$f\left(\mathbf{x}_{i}^{0}\right) < f\left(\mathbf{x}_{i}^{a_{i}}\right) \text{ and } f\left(\mathbf{y}_{i}^{a_{i}}\right) < f\left(\mathbf{y}_{i}^{1}\right) \implies f\left(\mathbf{x}_{i}^{a_{i}}\right) \le f\left(\mathbf{y}_{i}^{a_{i}}\right) \qquad (*)$$

Conversely, suppose \leq is represented by a Sugeno utility function *f*.

Then we may assume that *f* is surjective.

Hence $r = \alpha \circ f$ for some order-isomorphism α .

Since f satisfies (*), r satisfies (*) and thus

$$\forall \mathbf{x}, \mathbf{y} \in \mathbf{X} : \mathbf{x}_i^0 \prec \mathbf{x}_i^a \text{ and } \mathbf{y}_i^a \prec \mathbf{y}_i^1 \implies \mathbf{x}_i^a \preceq \mathbf{y}_i^a. \qquad \Box$$

- **QDM under uncertainty:** Single universe $X_0 = X_1 = X_2 = \cdots = X_n$ and a single utility function $\varphi \colon X_0 \to X$ for each $i \in [n]$.
 - Computational approach: Chateauneuf & Grabisch & Labreuche & Rico
 - Axiomatic treatment: Dubois & Fargier & Prade & Sabbadin

Further problems and directions of research:

- Properties for aggregation (functional equations):
 Examples: associativity, commutation, scale invariance...
- Aggregation on specific scales:

Examples: ordinal, interval, bipolar scales...

Interpolation problems:

Applications in AI: learning functions and preferences...

- Fusion of (qualitative) information.
- Onstruction methods.

Thank you for your attention!