Lattice polynomial functions and their use in qualitative decision making
 AAA83

Miguel Couceiro
Jointly with D. Dubois, J.-L. Marichal, T. Waldhauser, ...
University of Luxembourg

March 2012

Decision making DM

Main Problem: Model preference!

Decision making DM

Main Problem: Model preference!

Model: R on $X_{1} \times \cdots \times X_{n}$ is represented by $f: X_{1} \times \cdots \times X_{n} \rightarrow X$:

$$
\mathbf{x} R \mathbf{y} \quad \Longleftrightarrow \quad f(\mathbf{x}) \leq f(\mathbf{y})
$$

Decision making DM

Main Problem: Model preference!

Model: R on $X_{1} \times \cdots \times X_{n}$ is represented by $f: X_{1} \times \cdots \times X_{n} \rightarrow X$:

$$
\mathbf{x} R \mathbf{y} \quad \Longleftrightarrow \quad f(\mathbf{x}) \leq f(\mathbf{y})
$$

Limitation: The role of local preferences is not explicit!

Aggregation: $x_{1}, \ldots, x_{n} \longrightarrow y=A\left(x_{1}, \ldots, x_{n}\right)$

Aggregation: $x_{1}, \ldots, x_{n} \quad \longrightarrow \quad y=A\left(x_{1}, \ldots, x_{n}\right)$

Let X be a scale (bounded chain).

An aggregation function on X is a mapping $A: X^{n} \rightarrow X$ such that:
(1) A is order-preserving: for every $\mathbf{x}, \mathbf{y} \in X^{n}$

$$
\mathbf{x} \leq \mathbf{y} \Longrightarrow A(\mathbf{x}) \leq A(\mathbf{y})
$$

(2) A preserves the boundaries:

$$
\inf _{\mathbf{x} \in X^{n}} A(\mathbf{x})=\inf X \quad \text { and } \quad \sup _{\mathbf{x} \in X^{n}} A(\mathbf{x})=\sup X
$$

Traditionally: X is a real interval $\mathbb{I} \subseteq \mathbb{R}$, e.g., $\mathbb{I}=[0,1]$.

Aggregation in decision making DM

Numerical representation of relations: $f: X_{1} \times \cdots \times X_{n} \rightarrow \mathbb{I} \subseteq \mathbb{R}$:

$$
\mathbf{x} R \mathbf{y} \quad \Longleftrightarrow \quad f(\mathbf{x}) \leq f(\mathbf{y})
$$

DM: Preference on criteria i is represented by a local utility function

$$
\varphi_{i}: X_{i} \rightarrow \mathbb{I}
$$

Preference on $X_{1} \times \cdots \times X_{n}$ is represented by an overall utility function:

$$
F\left(x_{1}, \ldots, x_{n}\right):=A\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right)
$$

where $A: \mathbb{I}^{n} \rightarrow \mathbb{I}$ is an aggregation function.

Examples of aggregation functions:

(1) Arithmetic means: For $\mathbf{x} \in \mathbb{I}^{n}$,

$$
A M(\mathbf{x}):=\frac{1}{n} \sum_{1 \leq i \leq n} x_{i}
$$

(2) Weighted arithmetic means: For $\mathbf{x} \in \mathbb{I}^{n}$ and $\sum w_{i}=1$,

$$
W A M(\mathbf{x}):=\sum_{1 \leq i \leq n} w_{i} x_{i}
$$

(3) Choquet integrals: For $\mathbf{x} \in \mathbb{I}^{n}$,

$$
C(\mathbf{x}):=\sum_{I \subseteq\{1, \ldots, n\}} a_{l} \cdot \bigwedge_{i \in I} x_{i}
$$

Qualitative decision making QDM

In the qualitative approach:
The underlying sets X_{1}, \ldots, X_{n} and X are finite chains (ordinal scales),

$$
\text { e.g., } \quad X=\{\text { very bad, bad, satisfactory, good, very good }\}
$$

QDM: Preference relation on X_{i} is represented by

$$
\varphi_{i}: X_{i} \rightarrow X
$$

Preference relation on $X_{1} \times \cdots \times X_{n}$ is represented by

$$
F\left(x_{1}, \ldots, x_{n}\right):=A\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right)
$$

where $A: X^{n} \rightarrow X$ is an aggregation function.

Capacities

Let X be a chain with least and greatest elements 0 and 1, respectively.

A capacity is a mapping $v: 2^{[n]} \rightarrow X,[n]=\{1, \ldots, n\}$, such that
(1) $v(I) \leq v(J)$ whenever $I \subseteq J$,
(2) $v(\varnothing)=0$ and $v([n])=1$.

Order simplexes of X^{n}

Let σ be a permutation on $[n]=\{1, \ldots, n\} \quad\left(\sigma \in S_{n}\right)$

$$
X_{\sigma}^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{\sigma(1)} \leqslant \cdots \leqslant x_{\sigma(n)}\right\}
$$

Example: $X=[0,1]$ and $n=2$

$2!=2$ permutations (2 simplexes)

Sugeno integral

The (discrete) Sugeno integral on X w.r.t. v is defined by

$$
\mathcal{S}_{v}(\mathbf{x}):=\bigvee_{i \in[n]} v(\{\sigma(i), \ldots, \sigma(n)\}) \wedge x_{\sigma(i)}
$$

for every $\mathbf{x} \in X_{\sigma}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{\sigma(1)} \leqslant \cdots \leqslant x_{\sigma(n)}\right\}$.

Example

If $x_{3} \leqslant x_{1} \leqslant x_{2}$, then $x_{\sigma(1)}=x_{3}, x_{\sigma(2)}=x_{1}, x_{\sigma(3)}=x_{2}$, and

$$
\mathcal{S}_{v}\left(x_{1}, x_{2}, x_{3}\right)=(\underbrace{v(\{1,2,3\})}_{=1} \wedge x_{3}) \vee\left(v(\{1,2\}) \wedge x_{1}\right) \vee\left(v(\{2\}) \wedge x_{2}\right)
$$

Qualitative decision making QDM

Setting:

(1) n criteria on finite chains X_{1}, \ldots, X_{n}
(2) scores in a common finite chain X by local utility functions

$$
\varphi_{i}: X_{i} \rightarrow X
$$

We will assume that each φ_{i} is order-preserving.
(3) Preference relation on $X_{1} \times \cdots \times X_{n}$ is represented by

$$
F\left(x_{1}, \ldots, x_{n}\right):=A\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right)
$$

where $A: X^{n} \rightarrow X$ is a Sugeno integral. We shall refer to these overall utility functions as Sugeno utility functions.

Outline

(1) Preliminaries: Sugeno integrals as lattice polynomial functions.
(2) Characterizations of lattice polynomial functions.

Outline

(1) Preliminaries: Sugeno integrals as lattice polynomial functions.
(2) Characterizations of lattice polynomial functions.
(3) Generalization of polynomial functions: Sugeno utility functions.
(9) Sugeno utility functions: characterizations and factorizations.

Outline

(1) Preliminaries: Sugeno integrals as lattice polynomial functions.
(2) Characterizations of lattice polynomial functions.
(3) Generalization of polynomial functions: Sugeno utility functions.
(9) Sugeno utility functions: characterizations and factorizations.
(5) Axiomatic approach to qualitative decision-making QDM.
(0) Further research directions and open problems.

Preliminaries

Let X be a distributive (finite) lattice with
(1) operations \wedge and \vee,
(2) least and greatest elements 0 and 1 , respectively.

Lattice polynomial functions

A (lattice) polynomial function (on X) is any map $p: X^{n} \rightarrow X, n \geq 1$, obtainable by finitely many applications of the rules:
(1) The projections $\mathbf{x} \mapsto x_{i}, i \in[n]$, and the constant functions $\mathbf{x} \mapsto c$, $c \in X$, are polynomial functions.
(2) If $f: X^{n} \rightarrow X$ and $g: X^{n} \rightarrow X$ are polynomial functions, then $f \wedge g$ and $f \vee g$ are polynomial functions.

Example

$$
\operatorname{median}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{1}\right)
$$

Representations: Disjunctive Normal Form

A function $f: X^{n} \rightarrow X$ has a disjunctive normal form (DNF) if

$$
f(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(a_{I} \wedge \bigwedge_{i \in I} x_{i}\right)
$$

Representations: Disjunctive Normal Form

A function $f: X^{n} \rightarrow X$ has a disjunctive normal form (DNF) if

$$
f(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(a_{I} \wedge \bigwedge_{i \in I} x_{i}\right)
$$

Proposition (Goodstein'67)

A function $p: X^{n} \rightarrow X$ is a polynomial function iff it has the DNF:

$$
p(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(p\left(\mathbf{1}_{I}\right) \wedge \bigwedge_{i \in I} x_{i}\right)
$$

where $\mathbf{1}$ / denotes the "characteristic tuple" of $I \subseteq[n]$.

Sugeno integrals as lattice polynomial functions

The Sugeno integral on a chain X w.r.t. $v: 2^{[n]} \rightarrow X$ is defined by

$$
\mathcal{S}_{v}(\mathbf{x}):=\bigvee_{i \in[n]} v(\{\sigma(i), \ldots, \sigma(n)\}) \wedge x_{\sigma(i)}
$$

for every $\mathbf{x} \in X_{\sigma}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{\sigma(1)} \leqslant \cdots \leqslant x_{\sigma(n)}\right\}$.

Sugeno integrals as lattice polynomial functions

The Sugeno integral on a chain X w.r.t. $v: 2^{[n]} \rightarrow X$ is defined by

$$
\mathcal{S}_{v}(\mathbf{x}):=\bigvee_{i \in[n]} v(\{\sigma(i), \ldots, \sigma(n)\}) \wedge x_{\sigma(i)}
$$

for every $\mathbf{x} \in X_{\sigma}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{\sigma(1)} \leqslant \cdots \leqslant x_{\sigma(n)}\right\}$.

Theorem (Marichal)
A function $q: X^{n} \rightarrow X$ is the Sugeno integral \mathcal{S}_{V} iff

$$
q(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(v(I) \wedge \bigwedge_{i \in I} x_{i}\right)
$$

Since, $q\left(\mathbf{1}_{I}\right)=v(I)$, and $v(\varnothing)=0$ and $v([n])=1$, Sugeno integrals coincide with idempotent polynomial functions: $q(x, \ldots, x)=x$.

General properties of polynomial functions

Fact

Every polynomial function (in part., Sugeno integral) is order-preserving.

However...

The function $f(0)=f(a)=0$ and $f(1)=1$ is order-preserving on $\{0, a, 1\}$, but it is not a polynomial function, hence not a Sugeno integral!

Median decomposability (Marichal)

For $c \in X$ and $i \in[n]$, set $\mathbf{x}_{i}^{c}=\left(x_{1}, \ldots, x_{i-1}, c, x_{i+1}, \ldots, x_{n}\right)$. A function $f: X^{n} \rightarrow X$ is median decomposable if for each $i \in[n]$

$$
f(\mathbf{x})=\operatorname{median}\left(f\left(\mathbf{x}_{i}^{0}\right), x_{i}, f\left(\mathbf{x}_{i}^{1}\right)\right), \quad \text { for every } \mathbf{x} \in X^{n} .
$$

Median decomposability (Marichal)

For $c \in X$ and $i \in[n]$, set $\mathbf{x}_{i}^{c}=\left(x_{1}, \ldots, x_{i-1}, c, x_{i+1}, \ldots, x_{n}\right)$. A function $f: X^{n} \rightarrow X$ is median decomposable if for each $i \in[n]$

$$
f(\mathbf{x})=\operatorname{median}\left(f\left(\mathbf{x}_{i}^{0}\right), x_{i}, f\left(\mathbf{x}_{i}^{1}\right)\right), \quad \text { for every } \mathbf{x} \in X^{n} .
$$

$$
\begin{aligned}
& t=f\left(\mathbf{x}_{i}^{1}\right) \\
& s=f\left(\mathbf{x}_{i}^{0}\right)
\end{aligned}
$$

Characterization of polynomial functions

Fact

Every median decomposable function is order-preserving.

Characterization of polynomial functions

Fact

Every median decomposable function is order-preserving.

Theorem (Marichal)
A function $p: X^{n} \rightarrow X$ is
(1) a polynomial function iff it is median decomposable.
(2) a Sugeno integral iff it is idempotent and median decomposable.

General characterization of lattice polynomial classes

General criterion (C. \& Marichal)

Let C be a class of functions such that
(i) the unary members of C are polynomial functions;
(ii) any $g: X \rightarrow X$ obtained from $f: X^{n} \rightarrow X \in C$ by fixing $n-1$ arguments is in C.

Then C is a class of polynomial functions.

Extensions: pseudo-polynomial functions

Let $\mathbf{X}:=X_{1} \times \cdots \times X_{n}$, where each X_{i} is a finite distributive lattice.

Extensions: pseudo-polynomial functions

Let $\mathbf{X}:=X_{1} \times \cdots \times X_{n}$, where each X_{i} is a finite distributive lattice.

Definition

We say that $f: \mathbf{X} \rightarrow X$ is a pseudo-polynomial function if

$$
f(\mathbf{x})=p\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right)
$$

where $p: X^{n} \rightarrow X$ is polynomial function and each $\varphi_{i}: X_{i} \rightarrow X$ satisfies

$$
\begin{equation*}
\varphi_{i}(0) \leq \varphi_{i}\left(x_{i}\right) \leq \varphi_{i}(1) \tag{BC}
\end{equation*}
$$

Fact: We can always choose p to be a Sugeno integral!

Sugeno utility functions as pseudo-polynomial functions

A function $f: \mathbf{X} \rightarrow X$ is a Sugeno utility function if

$$
f(\mathbf{x})=q\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right),
$$

where q is a Sugeno integral and each $\varphi_{i}: X_{i} \rightarrow X$ is order-preserving.

Sugeno utility functions as pseudo-polynomial functions

A function $f: \mathbf{X} \rightarrow X$ is a Sugeno utility function if

$$
f(\mathbf{x})=q\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{n}\right)\right)
$$

where q is a Sugeno integral and each $\varphi_{i}: X_{i} \rightarrow X$ is order-preserving.

Proposition (C. \& Waldhauser)

Order-preserving pseudo-polynomial functions are Sugeno utility functions.

Problems...

Consider $f: \mathbf{X} \rightarrow X$.

Problem 1: Determine whether f is pseudo-polynomial function.

Problem 2: Find all possible factorizations $f=p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.

Problems...

Consider $f: \mathbf{X} \rightarrow X$.

Problem 1: Determine whether f is pseudo-polynomial function.

Problem 2: Find all possible factorizations $f=p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.

Remark:

Problems 1 and 2 were solved (C. \& Marichal) when $X_{1}=\cdots=X_{n}$ and

$$
f=p\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right) .
$$

Such model is pertaining to QDM under uncertainty.

Properties of pseudo-polynomial functions (I)

We say that $f: \mathbf{X} \rightarrow X$ is pseudo-median decomposable if for each $i \in[n]$ there exists $\varphi_{i}: X_{i} \rightarrow X$ such that

$$
f(\mathbf{x})=\operatorname{median}\left(f\left(\mathbf{x}_{i}^{0}\right), \varphi_{i}\left(x_{i}\right), f\left(\mathbf{x}_{i}^{1}\right)\right), \quad \text { for all } \mathbf{x} \in \mathbf{X}
$$

Properties of pseudo-polynomial functions (I)

We say that $f: \mathbf{X} \rightarrow X$ is pseudo-median decomposable if for each $i \in[n]$ there exists $\varphi_{i}: X_{i} \rightarrow X$ such that

$$
f(\mathbf{x})=\operatorname{median}\left(f\left(\mathbf{x}_{i}^{0}\right), \varphi_{i}\left(x_{i}\right), f\left(\mathbf{x}_{i}^{1}\right)\right), \quad \text { for all } \mathbf{x} \in \mathbf{X}
$$

Characterizations of pseudo-polynomial functions (I)

Proposition (C. \& Waldhauser)

If f is pseudo-median decomposable w.r.t. φ_{i}, then $f=p_{f}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ where $\quad p_{f}(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \wedge \bigwedge_{i \in I} x_{i}\right)$.

Characterizations of pseudo-polynomial functions (I)

Proposition (C. \& Waldhauser)

If f is pseudo-median decomposable w.r.t. φ_{i}, then $f=p_{f}\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ where $\quad p_{f}(\mathbf{x})=\bigvee_{I \subseteq[n]}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \wedge \bigwedge_{i \in I} x_{i}\right)$.

Theorem (C. \& Waldhauser)

f is a pseudo-polynomial function iff it is pseudo-median decomposable.

Embedding a distributive lattice X into a power-set Y

Embedding a distributive lattice X into a power-set Y

Closure and interior operators on Y

closure operator: $\mathrm{cl}(b)=\bigwedge_{\substack{a \in X \\ a \geq b}} a$ interior operator: $\operatorname{int}(b)=\bigvee_{\substack{a \in X \\ a \leq b}} a$

Closure and interior operators on Y

closure operator: $\mathrm{cl}(b)=\bigwedge_{\substack{a \in X \\ a \geq b}} a$
interior operator: $\operatorname{int}(b)=\bigvee_{\substack{a \in X \\ a \leq b}} a$
$c l(\overline{\mathrm{D}})=\mathrm{cl}(\overline{\mathrm{N}})=\mathrm{cl}(\overline{\mathrm{G}})=\mathrm{V}$
$\operatorname{int}(\overline{\mathrm{D}})=\mathrm{N}, \quad \operatorname{int}(\overline{\mathrm{N}})=\mathrm{D}, \operatorname{int}(\overline{\mathrm{G}})=\mathrm{B}$

Towards necessary conditions...

Given $f: \mathbf{X} \rightarrow X$ and $i \in[n]$, define functions $\Phi_{i}^{-}, \Phi_{i}^{+}: X_{i} \rightarrow X$ by

$$
\begin{aligned}
& \Phi_{i}^{-}\left(a_{i}\right):=\bigvee_{x_{i}=a_{i}} \operatorname{cl}\left(f(\mathbf{x}) \wedge \overline{f\left(\mathbf{x}_{i}^{0}\right)}\right), \\
& \Phi_{i}^{+}\left(a_{i}\right):=\bigwedge_{x_{i}=a_{i}} \operatorname{int}\left(f(\mathbf{x}) \vee \overline{f\left(\mathbf{x}_{i}^{1}\right)}\right) .
\end{aligned}
$$

Towards necessary conditions...

Given $f: \mathbf{X} \rightarrow X$ and $i \in[n]$, define functions $\Phi_{i}^{-}, \Phi_{i}^{+}: X_{i} \rightarrow X$ by

$$
\begin{aligned}
& \Phi_{i}^{-}\left(a_{i}\right):=\bigvee_{x_{i}=a_{i}} \operatorname{cl}\left(f(\mathbf{x}) \wedge \overline{f\left(\mathbf{x}_{i}^{0}\right)}\right) \\
& \Phi_{i}^{+}\left(a_{i}\right):=\bigwedge_{x_{i}=a_{i}} \operatorname{int}\left(f(\mathbf{x}) \vee \overline{f\left(\mathbf{x}_{i}^{1}\right)}\right)
\end{aligned}
$$

Proposition (C. \& Waldhauser)

If $f: \mathbf{X} \rightarrow X$ is a pseudo-polynomial function, then

$$
f=p_{f}\left(\varphi_{1}, \ldots, \varphi_{n}\right), \text { for } \varphi_{i} \in\left\{\Phi_{i}^{-}, \Phi_{i}^{+}\right\}
$$

Characterization of pseudo-polynomial functions

Fact

If f is a pseudo-polynomial function, then it satisfies

$$
f\left(\mathbf{x}_{i}^{0}\right) \leq f(\mathbf{x}) \leq f\left(\mathbf{x}_{i}^{1}\right) .
$$

Characterization of pseudo-polynomial functions

Fact

If f is a pseudo-polynomial function, then it satisfies

$$
f\left(\mathbf{x}_{i}^{0}\right) \leq f(\mathbf{x}) \leq f\left(\mathbf{x}_{i}^{1}\right) .
$$

Theorem (C. \& Waldhauser)

The function f is a pseudo-polynomial function iff
(1) f satisfies $\left(B C_{n}\right)$
(2) for every $i \in[n], \Phi_{i}^{-} \leq \Phi_{i}^{+}$.

When X is a finite chain

Theorem (C. \& Waldhauser): For a finite chain X...
$f: \mathbf{X} \rightarrow X$ is pseudo-polynomial iff it satisfies $\left(\mathrm{BC}_{n}\right)$ and

$$
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right)
$$

Finding the local utility functions

Theorem (C. \& Waldhauser)
A function $\varphi_{i}: X_{i} \rightarrow X$ satisfying (BC) appears in a factorization of f iff

$$
\Phi_{i}^{-} \leq \varphi_{i} \leq \Phi_{i}^{+}
$$

Finding all polynomial functions

Let $f: \mathbf{X} \rightarrow X$ and $\varphi_{i}: X_{i} \rightarrow X$ be given as before.
We define the polynomial functions $p^{-}, p^{+}: Y^{n} \rightarrow X$ by

$$
\begin{aligned}
p^{-}(\mathbf{y}) & :=\bigvee_{I \subseteq[n]}\left(c_{I}^{-} \wedge \bigwedge_{i \in I} x_{i}\right) \text { with } c_{I}^{-}:=\operatorname{cl}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \wedge \bigwedge_{i \notin I} \overline{\varphi_{i}(0)}\right) \\
p^{+}(\mathbf{y}) & :=\bigvee_{I \subseteq[n]}\left(c_{l}^{+} \wedge \bigwedge_{i \in I} x_{i}\right) \text { with } c_{I}^{+}:=\operatorname{int}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \vee \bigvee_{i \in I} \overline{\varphi_{i}(1)}\right) .
\end{aligned}
$$

Finding all polynomial functions

Let $f: \mathbf{X} \rightarrow X$ and $\varphi_{i}: X_{i} \rightarrow X$ be given as before.
We define the polynomial functions $p^{-}, p^{+}: Y^{n} \rightarrow X$ by

$$
\begin{aligned}
p^{-}(\mathbf{y}) & :=\bigvee_{I \subseteq[n]}\left(c_{I}^{-} \wedge \bigwedge_{i \in I} x_{i}\right) \text { with } c_{I}^{-}:=\operatorname{cl}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \wedge \bigwedge_{i \notin I} \overline{\varphi_{i}(0)}\right) \\
p^{+}(\mathbf{y}) & :=\bigvee_{I \subseteq[n]}\left(c_{I}^{+} \wedge \bigwedge_{i \in I} x_{i}\right) \text { with } c_{I}^{+}:=\operatorname{int}\left(f\left(\widehat{\mathbf{1}}_{l}\right) \vee \bigvee_{i \in I} \overline{\varphi_{i}(1)}\right)
\end{aligned}
$$

Theorem (C. \& Waldhauser)

For a polynomial function $p(\mathbf{y})=\bigvee_{I \subseteq[n]}\left(c_{I} \wedge \bigwedge_{i \in I} x_{i}\right)$ we have
$f=p\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ if and only if $c_{l}^{-} \leq c_{I} \leq c_{l}^{+}$holds for all $I \subseteq[n]$.

Decision making DM

Main Problems

(1) Model preference relations.
(2) Axiomatize the chosen model.

Decision making DM

Main Problems

(1) Model preference relations.
(2) Axiomatize the chosen model.

Question: What is a preference relation?

Preference relations

Let $\mathbf{X}:=X_{1} \times \cdots \times X_{n}$, where each X_{i} is a finite chain.

Preference relations

Let $\mathbf{X}:=X_{1} \times \cdots \times X_{n}$, where each X_{i} is a finite chain.

A weak order on \mathbf{X} is a relation $\preceq \subseteq \mathbf{X}^{2}$ that is:
(1) reflexive: $\forall \mathbf{x} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{x}$,
(2) transitive: $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{y}, \mathbf{y} \preceq \mathbf{z} \Longrightarrow \mathbf{x} \preceq \mathbf{z}$, and
(3) complete: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{y}$ or $\mathbf{y} \preceq \mathbf{x}$.

Preference relations

Let $\mathbf{X}:=X_{1} \times \cdots \times X_{n}$, where each X_{i} is a finite chain.

A weak order on \mathbf{X} is a relation $\preceq \subseteq \mathbf{X}^{2}$ that is:
(1) reflexive: $\forall \mathbf{x} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{x}$,
(2) transitive: $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{y}, \mathbf{y} \preceq \mathbf{z} \Longrightarrow \mathbf{x} \preceq \mathbf{z}$, and
(3) complete: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{y}$ or $\mathbf{y} \preceq \mathbf{x}$.

Note: Weak orders are not necessarily antisymmetric:

$$
\begin{equation*}
\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x} \preceq \mathbf{y}, \mathbf{y} \preceq \mathbf{x} \Longrightarrow \mathbf{x}=\mathbf{y} \tag{AS}
\end{equation*}
$$

Indifference relation

The indifference relation \sim associated with \preceq is defined by:

$$
\mathbf{y} \sim \mathbf{x} \text { iff } \mathbf{x} \preceq \mathbf{y} \text { and } \mathbf{y} \preceq \mathbf{x}
$$

Note that...

(1) \sim is an equivalence relation.
(2) $\leq:=\preceq / \sim$ satisfies (AS) and \mathbf{X} / \sim is a (finite) chain.

Preference relations

A preference relation on \mathbf{X} is a weak order \preceq that satisfies
Pareto condition: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \forall i \in[n], x_{i} \preceq_{i} y_{i} \Longrightarrow \mathbf{x} \preceq \mathbf{y}$.

Preference relations

A preference relation on \mathbf{X} is a weak order \preceq that satisfies
Pareto condition: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \forall i \in[n], x_{i} \preceq_{i} y_{i} \Longrightarrow \mathbf{x} \preceq \mathbf{y}$.

Fact

The rank function $r: \mathbf{X} \rightarrow \mathbf{X} / \sim$ of \preceq is order-preserving and:

$$
\mathbf{x} \preceq \mathbf{y} \Longleftrightarrow r(\mathbf{x}) \leq r(\mathbf{y}) .
$$

Preference relations

A preference relation on \mathbf{X} is a weak order \preceq that satisfies
Pareto condition: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \forall i \in[n], x_{i} \preceq_{i} y_{i} \Longrightarrow \mathbf{x} \preceq \mathbf{y}$.

Fact

The rank function $r: \mathbf{X} \rightarrow \mathbf{X} / \sim$ of \preceq is order-preserving and:

$$
\mathbf{x} \preceq \mathbf{y} \Longleftrightarrow r(\mathbf{x}) \leq r(\mathbf{y}) .
$$

Consequence:

Preference relations are exactly those representable by order-preserving functions.

Axiomatic approach to QDM

Model: Preference relations are represented by Sugeno utility functions.

Axiomatic approach to QDM

Model: Preference relations are represented by Sugeno utility functions.

Theorem (C. \& Dubois \& Waldhauser)
A relation \preceq on \mathbf{X} is representable by a Sugeno utility function iff
(1) \preceq is a preference relation
(2) \preceq satisfies: $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x}_{i}^{0} \prec \mathbf{x}_{i}^{a}$ and $\mathbf{y}_{i}^{a} \prec \mathbf{y}_{i}^{1} \Longrightarrow \mathbf{x}_{i}^{a} \preceq \mathbf{y}_{i}^{a}$.

Proof

Theorem: For a finite chain $X \ldots$
$f: \mathbf{X} \rightarrow X$ is a Sugeno utility function iff it is order-preserving and

$$
\begin{equation*}
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right) \tag{*}
\end{equation*}
$$

Proof

Theorem: For a finite chain $X \ldots$

$f: \mathbf{X} \rightarrow X$ is a Sugeno utility function of it is order-preserving and

$$
\begin{equation*}
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right) \tag{*}
\end{equation*}
$$

If \preceq is a preference relation satisfying:

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x}_{i}^{0} \prec \mathbf{x}_{i}^{a} \text { and } \mathbf{y}_{i}^{a} \prec \mathbf{y}_{i}^{1} \Longrightarrow \mathbf{x}_{i}^{a} \preceq \mathbf{y}_{i}^{a}
$$

then r is a Sugeno utility function representing \preceq.

Conversely...

Theorem: For a finite chain X...
$f: \mathbf{X} \rightarrow X$ is a Sugeno utility function iff it is order-preserving and

$$
\begin{equation*}
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right) \tag{*}
\end{equation*}
$$

Conversely, suppose \preceq is represented by a Sugeno utility function f.

Conversely...

Theorem: For a finite chain $X \ldots$
$f: \mathbf{X} \rightarrow X$ is a Sugeno utility function iff it is order-preserving and

$$
\begin{equation*}
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right) \tag{*}
\end{equation*}
$$

Conversely, suppose \preceq is represented by a Sugeno utility function f.
Then we may assume that f is surjective.
Hence $r=\alpha \circ f$ for some order-isomorphism α.

Conversely...

Theorem: For a finite chain X...
$f: \mathbf{X} \rightarrow X$ is a Sugeno utility function iff it is order-preserving and

$$
\begin{equation*}
f\left(\mathbf{x}_{i}^{0}\right)<f\left(\mathbf{x}_{i}^{a_{i}}\right) \text { and } f\left(\mathbf{y}_{i}^{a_{i}}\right)<f\left(\mathbf{y}_{i}^{1}\right) \Longrightarrow f\left(\mathbf{x}_{i}^{a_{i}}\right) \leq f\left(\mathbf{y}_{i}^{a_{i}}\right) \tag{*}
\end{equation*}
$$

Conversely, suppose \preceq is represented by a Sugeno utility function f.
Then we may assume that f is surjective.
Hence $r=\alpha \circ f$ for some order-isomorphism α.
Since f satisfies $(*), r$ satisfies $(*)$ and thus

$$
\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}: \mathbf{x}_{i}^{0} \prec \mathbf{x}_{i}^{a} \text { and } \mathbf{y}_{i}^{a} \prec \mathbf{y}_{i}^{1} \Longrightarrow \mathbf{x}_{i}^{a} \preceq \mathbf{y}_{i}^{a}
$$

Remarks:

QDM under uncertainty: Single universe $X_{0}=X_{1}=X_{2}=\cdots=X_{n}$ and a single utility function $\varphi: X_{0} \rightarrow X$ for each $i \in[n]$.
(1) Computational approach: Chateauneuf \& Grabisch \& Labreuche \& Rico
(c) Axiomatic treatment: Dubois \& Fargier \& Prade \& Sabbadin

Further problems and directions of research:

(1) Properties for aggregation (functional equations):

Examples: associativity, commutation, scale invariance...
(2) Aggregation on specific scales:

Examples: ordinal, interval, bipolar scales...
(3) Interpolation problems:

Applications in AI: learning functions and preferences...
(9) Fusion of (qualitative) information.
(5) Construction methods.
©

Thank you for your attention!

