CSP dichotomy for special oriented trees

Jakub Bulín

Department of Algebra, Charles University in Prague

The 83rd Workshop on General Algebra

Outline

3 Proof

Open problems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

$\mathbb H\text{-}colouring \ problem$

Let \mathbb{H} be a directed graph.

Definition CSP(\mathbb{H}), or the \mathbb{H} -colouring problem, is the following decision problem: INPUT: a digraph \mathbb{G} QUESTION: Is there a homomorphism $\mathbb{G} \to \mathbb{H}$?

Conjecture (Feder, Vardi'99)

For every $\mathbb H$, CSP $(\mathbb H)$ is in P or NP-complete.

$\mathbb H\text{-}colouring\ problem$

Let \mathbb{H} be a directed graph.

Definition CSP(\mathbb{H}), or the \mathbb{H} -colouring problem, is the following decision problem: INPUT: a digraph \mathbb{G} QUESTION: Is there a homomorphism $\mathbb{G} \to \mathbb{H}$?

Conjecture (Feder, Vardi'99)

For every \mathbb{H} , CSP(\mathbb{H}) is in P or NP-complete.

Polymorphisms

Let $\mathbb{H} = (H, \rightarrow)$ be a digraph.

Definition

An operation $f: H^n \to H$ is a polymorphism of \mathbb{H} if whenever $\forall i: a_i \to b_i$, then $f(a_1, \ldots, a_n) \to f(b_1, \ldots, b_n)$.

$$\begin{array}{cccc} f(a_1 & a_2 & \dots & a_n) & = & a \\ \downarrow & \downarrow & & \downarrow & \Longrightarrow & \downarrow \\ f(b_1 & b_2 & \dots & b_n) & = & b \end{array}$$

Definition

The algebra of (idempotent) polymorphisms of \mathbb{H} :

 $alg \mathbb{H} = \langle H; idempotent polymorphisms of \mathbb{H} \rangle$

Polymorphisms

Let $\mathbb{H} = (H, \rightarrow)$ be a digraph.

Definition

An operation $f: H^n \to H$ is a polymorphism of \mathbb{H} if whenever $\forall i: a_i \to b_i$, then $f(a_1, \ldots, a_n) \to f(b_1, \ldots, b_n)$.

$$\begin{array}{ccccc} f(a_1 & a_2 & \dots & a_n) & = & a \\ \downarrow & \downarrow & & \downarrow & \Longrightarrow & \downarrow \\ f(b_1 & b_2 & \dots & b_n) & = & b \end{array}$$

Definition

The algebra of (idempotent) polymorphisms of \mathbb{H} :

 $alg \mathbb{H} = \langle H; idempotent polymorphisms of \mathbb{H} \rangle$

Polymorphisms

Let $\mathbb{H} = (H, \rightarrow)$ be a digraph.

Definition

An operation $f: H^n \to H$ is a polymorphism of \mathbb{H} if whenever $\forall i: a_i \to b_i$, then $f(a_1, \ldots, a_n) \to f(b_1, \ldots, b_n)$.

Definition

The algebra of (idempotent) polymorphisms of \mathbb{H} :

 $\mathbf{alg}\mathbb{H} = \langle H; \text{idempotent polymorphisms of } \mathbb{H} \rangle$

Algebraic dichotomy

Let $\mathbb H$ be a core digraph.

Theorem (Jeavons, Bulatov, Krokhin'00-05)

If $alg \mathbb{H}$ is not Taylor, then $CSP(\mathbb{H})$ is NP-complete.

Taylor algebra = $\mathcal{V}(\mathbf{A})$ satisfies some nontrivial maltsev condition

Conjecture (Jeavons, Bulatov, Krokhin'05)

If $alg \mathbb{H}$ is Taylor, then $CSP(\mathbb{H})$ is in P.

An important tractable case:

Theorem ("Bounded Width Theorem", Barto, Kozik'08) If also in Equation (CRP(III) is in Equation (CRP(III)) is in Equation (CRP(III)).

 $SD(\wedge)$ algebra = $\mathcal{V}(\mathbf{A})$ has meet-semidistributive congruence lattices

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algebraic dichotomy

Let $\mathbb H$ be a core digraph.

Theorem (Jeavons, Bulatov, Krokhin'00-05)

If $alg \mathbb{H}$ is not Taylor, then $CSP(\mathbb{H})$ is NP-complete.

Taylor algebra = $\mathcal{V}(\mathbf{A})$ satisfies some nontrivial maltsev condition

Conjecture (Jeavons, Bulatov, Krokhin'05)

If $alg \mathbb{H}$ is Taylor, then $CSP(\mathbb{H})$ is in P.

An important tractable case:

Theorem ("Bounded Width Theorem", Barto, Kozik'08)

If $alg \mathbb{H}$ is $SD(\wedge)$, then \mathbb{H} has bounded width ($\Rightarrow CSP(\mathbb{H})$ is in P).

 $SD(\wedge)$ algebra = $\mathcal{V}(\mathbf{A})$ has meet-semidistributive congruence lattices

イロト イポト イヨト イヨト 二日

Algebraic dichotomy

Let $\mathbb H$ be a core digraph.

Theorem (Jeavons, Bulatov, Krokhin'00-05)

If $alg \mathbb{H}$ is not Taylor, then $CSP(\mathbb{H})$ is NP-complete.

Taylor algebra = $\mathcal{V}(\mathbf{A})$ satisfies some nontrivial maltsev condition

Conjecture (Jeavons, Bulatov, Krokhin'05)

If $alg \mathbb{H}$ is Taylor, then $CSP(\mathbb{H})$ is in P.

An important tractable case:

Theorem ("Bounded Width Theorem", Barto, Kozik'08)

If $alg \mathbb{H}$ is $SD(\wedge)$, then \mathbb{H} has bounded width ($\Rightarrow CSP(\mathbb{H})$ is in P).

 $SD(\wedge)$ algebra = $\mathcal{V}(\mathbf{A})$ has meet-semidistributive congruence lattices

イロト 不得 トイヨト イヨト 二日

Outline

3 Proof

Open problems

< ロ > < 同 > < 三 > < 三

Levels, minimal paths

Let $\mathbb H$ be an oriented tree.

- we can assign levels to its vertices
- maximum level = *height* of \mathbb{H} .

An oriented path \mathbb{P} is minimal, if its initial vertex has level 0, terminal vertex level k, and for all other vertices 0 < level(v) < k

Levels, minimal paths

Let $\mathbb H$ be an oriented tree.

- we can assign levels to its vertices
- maximum level = *height* of \mathbb{H} .

An oriented path \mathbb{P} is minimal, if its initial vertex has level 0, terminal vertex level k, and for all other vertices 0 < level(v) < k



Special trees

Definition

Let \mathbb{T} be an oriented tree of height 1. A \mathbb{T} -special tree is an oriented tree obtained from \mathbb{T} by replacing all edges by minimal paths of the same height (preserving orientation).

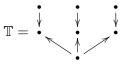
A <mark>special triad</mark> is a T-special tree where

Special trees

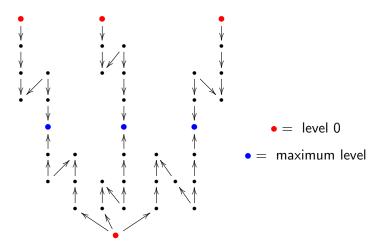
Definition

Let \mathbb{T} be an oriented tree of height 1. A \mathbb{T} -special tree is an oriented tree obtained from \mathbb{T} by replacing all edges by minimal paths of the same height (preserving orientation).

A special triad is a \mathbb{T} -special tree where



Example of a special triad



Problem (Barto, Kozik, Maróti, Niven)

Is this the smallest NP-complete oriented tree?

Jakub Bulín (Charles Univ., Prague) CSP dichotomy for special oriented trees

- (Hell, Nešetřil, Zhu'90): a very specific subclass of triads, the special triads; constructing a small NP-complete oriented tree
- (Barto, Kozik, Maróti, Niven'08): dichotomy for special triads; tractable cases are easy – either majority polymorphism or width 1
- (Barto, JB'10): dichotomy for special polyads; tractable ones have BW (Taylor ⇒ SD(∧)), but are not so easy
 + we can generate nice (counter-)examples in trees
- (JB'12): dichotomy for a larger class of special trees; a new proof using absorption techniques

A (10) A (10)

- (Hell, Nešetřil, Zhu'90): a very specific subclass of triads, the special triads; constructing a small NP-complete oriented tree
- (Barto, Kozik, Maróti, Niven'08): dichotomy for special triads; tractable cases are easy – either majority polymorphism or width 1
- (Barto, JB'10): dichotomy for special polyads; tractable ones have BW (Taylor ⇒ SD(∧)), but are not so easy
 + we can generate nice (counter-)examples in trees
- (JB'12): dichotomy for a larger class of special trees; a new proof using absorption techniques

(人間) トイヨト イヨト

- (Hell, Nešetřil, Zhu'90): a very specific subclass of triads, the special triads; constructing a small NP-complete oriented tree
- (Barto, Kozik, Maróti, Niven'08): dichotomy for special triads; tractable cases are easy – either majority polymorphism or width 1
- (Barto, JB'10): dichotomy for special polyads; tractable ones have BW (Taylor \Rightarrow *SD*(\land)), but are not so easy
 - + we can generate nice (counter-)examples in trees
- (JB'12): dichotomy for a larger class of special trees; a new proof using absorption techniques

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Hell, Nešetřil, Zhu'90): a very specific subclass of triads, the special triads; constructing a small NP-complete oriented tree
- (Barto, Kozik, Maróti, Niven'08): dichotomy for special triads; tractable cases are easy – either majority polymorphism or width 1
- (Barto, JB'10): dichotomy for special polyads; tractable ones have BW (Taylor ⇒ SD(∧)), but are not so easy
 + we can generate nice (counter-)examples in trees
- (JB'12): dichotomy for a larger class of special trees; a new proof using absorption techniques

New result

Proposition (JB'12)

Let \mathbb{T} be an oriented tree of height 1 satisfying one of these conditions:

- maximum degree of \mathbb{T} is ≤ 3
- **2** \mathbb{T} has at most 3 vertices of degree > 2.

Then the CSP dichotomy holds for \mathbb{T} -special trees.

More specifically, for all \mathbb{T} -special trees \mathbb{H} , if $alg \mathbb{H}$ is Taylor, then it is $SD(\wedge)$.

Strategy of proof:

- Absorption Theorem ⇒ alg 𝔄 can't have many absorption-free subalgebras...
- ... and they are all nice (have TSI operations of all arities)

.

New result

Proposition (JB'12)

Let \mathbb{T} be an oriented tree of height 1 satisfying one of these conditions:

- maximum degree of \mathbb{T} is ≤ 3
- **2** \mathbb{T} has at most 3 vertices of degree > 2.

Then the CSP dichotomy holds for \mathbb{T} -special trees.

More specifically, for all \mathbb{T} -special trees \mathbb{H} , if $alg \mathbb{H}$ is Taylor, then it is $SD(\wedge)$.

Strategy of proof:

- Absroption Theorem \Rightarrow **alg** \mathbb{H} can't have many absorption-free subalgebras...
- ... and they are all nice (have TSI operations of all arities)

(B)

Outline

(日) (同) (三) (三)

Absorption

Definition

A subalgebra $C \leq A$ is absorbing ($C \leq A$), if there exists an idempotent t such that

$$t(C, C, \dots, C, A) \subseteq C,$$

$$t(C, C, \dots, A, C) \subseteq C,$$

$$\vdots$$

$$t(A, C, \dots, C, C) \subseteq C.$$

Example: A (finite) algebra **A** has a near-unanimity term iff $\{a\} \leq \mathbf{A}$ for every $a \in A$.

A is absorption-free if it has no proper absorbing subalgebras.

(4) (3) (4) (4) (4)

Absorption

Definition

A subalgebra $C \leq A$ is absorbing ($C \leq A$), if there exists an idempotent t such that

$$t(C, C, \dots, C, A) \subseteq C,$$

$$t(C, C, \dots, A, C) \subseteq C,$$

$$\vdots$$

$$t(A, C, \dots, C, C) \subseteq C.$$

Example: A (finite) algebra **A** has a near-unanimity term iff $\{a\} \leq \mathbf{A}$ for every $a \in A$.

A is absorption-free if it has no proper absorbing subalgebras.

Absorption

Definition

A subalgebra $C \leq A$ is absorbing ($C \leq A$), if there exists an idempotent t such that

$$t(C, C, \dots, C, A) \subseteq C,$$

$$t(C, C, \dots, A, C) \subseteq C,$$

$$\vdots$$

$$t(A, C, \dots, C, C) \subseteq C.$$

Example: A (finite) algebra **A** has a near-unanimity term iff $\{a\} \leq \mathbf{A}$ for every $a \in A$.

A is absorption-free if it has no proper absorbing subalgebras.

Some facts about absorption

Theorem ("Absorption Theorem", Barto, Kozik'10)

A, **B** finite algebras in a Taylor variety, $E \leq_S \mathbf{A} \times \mathbf{B}$ linked. Then there exist $\mathbf{C} \trianglelefteq \mathbf{A}$, $\mathbf{D} \trianglelefteq \mathbf{B}$ such that $E \upharpoonright C \times D = C \times D$.

linked = connected as a bipartite graph

Lemma (Barto, Kozik)

Let **A** be a finite idempotent algebra. Then **A** is $SD(\wedge)$ iff all absorption-free subalgebras of **A** are $SD(\wedge)$.

Proof: Follows from the Bounded Width algorithm.

Some facts about absorption

Theorem ("Absorption Theorem", Barto, Kozik'10)

A, **B** finite algebras in a Taylor variety, $E \leq_S \mathbf{A} \times \mathbf{B}$ linked. Then there exist $\mathbf{C} \trianglelefteq \mathbf{A}$, $\mathbf{D} \trianglelefteq \mathbf{B}$ such that $E \upharpoonright C \times D = C \times D$.

linked = connected as a bipartite graph

Lemma (Barto, Kozik)

Let **A** be a finite idempotent algebra. Then **A** is $SD(\wedge)$ iff all absorption-free subalgebras of **A** are $SD(\wedge)$.

Proof: Follows from the Bounded Width algorithm.

Let $\mathbb{T} = (T, E)$ be an oriented tree of height 1, \mathbb{H} a \mathbb{T} -special tree such that $\mathbf{alg}\mathbb{H}$ is Taylor.

- $\mathbf{A} = \{ \text{vertices of level } 0 \} \le \mathbf{alg} \mathbb{H}$
 - $\mathbf{B} = \{$ vertices of maximum level $\} \le$ alg \mathbb{H}
- alg⊞ is SD(∧) iff both A and B are SD(∧) (this is what makes the trees "special")
- $E \leq_S \mathbf{A} \times \mathbf{B}$ (*E* is pp-definable), *E* is a tree

Lemma

Let **A**, **B** be finite idempotent algebras in a Taylor variety and $E \leq_S \mathbf{A} \times \mathbf{B}$ a tree such that

 $E^+(a)$ and $E^-(b)$ are $SD(\wedge)$ $\forall a \in A \forall b \in B$.

Then **A** and **B** are $SD(\wedge)$.

Let $\mathbb{T} = (T, E)$ be an oriented tree of height 1, \mathbb{H} a \mathbb{T} -special tree such that $\mathbf{alg}\mathbb{H}$ is Taylor.

- $\mathbf{A} = \{ \text{vertices of level } 0 \} \le \mathbf{alg} \mathbb{H}$
 - $\textbf{B} = \{ \text{vertices of maximum level} \} \leq \textbf{alg} \mathbb{H}$
- algℍ is SD(∧) iff both A and B are SD(∧) (this is what makes the trees "special")
- $E \leq_S \mathbf{A} \times \mathbf{B}$ (*E* is pp-definable), *E* is a tree

Lemma

Let **A**, **B** be finite idempotent algebras in a Taylor variety and $E \leq_S \mathbf{A} \times \mathbf{B}$ a tree such that

 $E^+(a)$ and $E^-(b)$ are $SD(\wedge) \forall a \in A \forall b \in B$.

Then **A** and **B** are $SD(\wedge)$.

イロト イポト イヨト イヨト

Let $\mathbb{T} = (T, E)$ be an oriented tree of height 1, \mathbb{H} a \mathbb{T} -special tree such that $\mathbf{alg}\mathbb{H}$ is Taylor.

- $\mathbf{A} = \{ \text{vertices of level } 0 \} \le \mathbf{alg}\mathbb{H}$
 - $\textbf{B} = \{ \text{vertices of maximum level} \} \leq \textbf{alg} \mathbb{H}$
- alg ℍ is SD(∧) iff both A and B are SD(∧) (this is what makes the trees "special")
- $E \leq_S \mathbf{A} \times \mathbf{B}$ (*E* is pp-definable), *E* is a tree

Lemma

Let **A**, **B** be finite idempotent algebras in a Taylor variety and $E \leq_S \mathbf{A} \times \mathbf{B}$ a tree such that

 $E^+(a)$ and $E^-(b)$ are $SD(\wedge)$ $\forall a \in A \forall b \in B$.

Then **A** and **B** are $SD(\wedge)$.

(日) (同) (三) (三)

Let $\mathbb{T} = (T, E)$ be an oriented tree of height 1, \mathbb{H} a \mathbb{T} -special tree such that $\mathbf{alg}\mathbb{H}$ is Taylor.

- $A = \{ \text{vertices of level } 0 \} \le alg \mathbb{H}$ $B = \{ \text{vertices of maximum level} \} \le alg \mathbb{H}$
- alg⊞ is SD(∧) iff both A and B are SD(∧) (this is what makes the trees "special")
- $E \leq_S \mathbf{A} \times \mathbf{B}$ (*E* is pp-definable), *E* is a tree

Lemma

Let **A**, **B** be finite idempotent algebras in a Taylor variety and $E \leq_S \mathbf{A} \times \mathbf{B}$ a tree such that

 $E^+(a)$ and $E^-(b)$ are $SD(\wedge)$ $\forall a \in A \forall b \in B$.

Then **A** and **B** are $SD(\wedge)$.

Let $\mathbb{T} = (T, E)$ be an oriented tree of height 1, \mathbb{H} a \mathbb{T} -special tree such that $\mathbf{alg}\mathbb{H}$ is Taylor.

- $A = \{ \text{vertices of level } 0 \} \le alg \mathbb{H}$ $B = \{ \text{vertices of maximum level} \} \le alg \mathbb{H}$
- alg⊞ is SD(∧) iff both A and B are SD(∧) (this is what makes the trees "special")
- $E \leq_S \mathbf{A} \times \mathbf{B}$ (*E* is pp-definable), *E* is a tree

Lemma

Let **A**, **B** be finite idempotent algebras in a Taylor variety and $E \leq_S \mathbf{A} \times \mathbf{B}$ a tree such that

$$E^+(a)$$
 and $E^-(b)$ are $SD(\wedge)$ $\forall a \in A \forall b \in B$.

Then **A** and **B** are $SD(\wedge)$.

It remains to prove that *E*-neigbourhoods of singletons are $SD(\wedge)$. For that we have an ad hoc construction:

Lemma

Let $\mathbf{D} \leq E^+(a)$ be absorption-free. There exists a binary idempotent polymorphism \star of \mathbb{H} such that $\star \upharpoonright D$ is commutative (i.e., a 2-wnu).

Under some extra conditions (for example if $D = E^+(a)$), for every k there exists a k-ary idempotent polymorphism t such that $t \upharpoonright D$ is totally symmetric.

If maximum degree of \mathbb{T} is ≤ 3 , then either $|D| \leq 2$ or $D = E^+(a)$. In both cases **D** is $SD(\wedge)$.

It remains to prove that *E*-neigbourhoods of singletons are $SD(\wedge)$. For that we have an ad hoc construction:

Lemma

Let $\mathbf{D} \leq E^+(a)$ be absorption-free. There exists a binary idempotent polymorphism \star of \mathbb{H} such that $\star \upharpoonright D$ is commutative (i.e., a 2-wnu).

Under some extra conditions (for example if $D = E^+(a)$), for every k there exists a k-ary idempotent polymorphism t such that $t \upharpoonright D$ is totally symmetric.

If maximum degree of \mathbb{T} is ≤ 3 , then either $|D| \leq 2$ or $D = E^+(a)$. In both cases **D** is $SD(\wedge)$.

It remains to prove that *E*-neigbourhoods of singletons are $SD(\wedge)$. For that we have an ad hoc construction:

Lemma

Let $\mathbf{D} \leq E^+(a)$ be absorption-free. There exists a binary idempotent polymorphism \star of \mathbb{H} such that $\star \upharpoonright D$ is commutative (i.e., a 2-wnu).

Under some extra conditions (for example if $D = E^+(a)$), for every k there exists a k-ary idempotent polymorphism t such that $t \upharpoonright D$ is totally symmetric.

If maximum degree of \mathbb{T} is ≤ 3 , then either $|D| \leq 2$ or $D = E^+(a)$. In both cases **D** is $SD(\wedge)$.

イロト イポト イヨト イヨト 二日

It remains to prove that *E*-neigbourhoods of singletons are $SD(\wedge)$. For that we have an ad hoc construction:

Lemma

Let $\mathbf{D} \leq E^+(a)$ be absorption-free. There exists a binary idempotent polymorphism \star of \mathbb{H} such that $\star \upharpoonright D$ is commutative (i.e., a 2-wnu).

Under some extra conditions (for example if $D = E^+(a)$), for every k there exists a k-ary idempotent polymorphism t such that $t \upharpoonright D$ is totally symmetric.

If maximum degree of \mathbb{T} is ≤ 3 , then either $|D| \leq 2$ or $D = E^+(a)$. In both cases **D** is $SD(\wedge)$.

- 4回 ト 4 ヨ ト - 4 ヨ ト - - ヨ

Outline

1 Introduction

- 2 Oriented trees
- 3 Proof

イロト イヨト イヨト イヨト

Open problems

Problem

Prove that Taylor implies $SD(\wedge)$ for all special trees.

Problem

Can these techniques be adapted for general orientes trees? Maybe just for triads?

Problem

Was that the smallest NP-complete oriented tree?

Thanks

Thank you for your attention!

∃ →

• • • • • • • • • • • •