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Jakub Buĺın (Charles Univ., Prague) CSP dichotomy for special oriented trees AAA83 2 / 19



H-colouring problem

Let H be a directed graph.

Definition

CSP(H), or the H-colouring problem, is the following decision problem:

INPUT: a digraph G
QUESTION: Is there a homomorphism G→ H?

Conjecture (Feder, Vardi’99)

For every H, CSP(H) is in P or NP-complete.
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Polymorphisms

Let H = (H,→) be a digraph.

Definition

An operation f : Hn → H is a polymorphism of H if whenever
∀i : ai → bi , then f (a1, . . . , an)→ f (b1, . . . , bn).

f (a1 a2 . . . an) = a
↓ ↓ ↓ =⇒ ↓

f (b1 b2 . . . bn) = b

Definition

The algebra of (idempotent) polymorphisms of H:

algH = 〈H; idempotent polymorphisms of H〉
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Algebraic dichotomy

Let H be a core digraph.

Theorem (Jeavons, Bulatov, Krokhin’00-05)

If algH is not Taylor, then CSP(H) is NP-complete.

Taylor algebra = V(A) satisfies some nontrivial maltsev condition

Conjecture (Jeavons, Bulatov, Krokhin’05)

If algH is Taylor, then CSP(H) is in P.

An important tractable case:

Theorem (”Bounded Width Theorem”, Barto, Kozik’08)

If algH is SD(∧), then H has bounded width (⇒CSP(H) is in P).

SD(∧) algebra = V(A) has meet-semidistributive congruence lattices
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Levels, minimal paths

Let H be an oriented tree.

we can assign levels to its vertices

maximum level = height of H.

An oriented path P is minimal, if its initial vertex has level 0, terminal
vertex level k, and for all other vertices 0 < level(v) < k

DD

DDZZ DD

DDZZ DDZZ

ZZ DDZZ DD

DD

DD

Jakub Buĺın (Charles Univ., Prague) CSP dichotomy for special oriented trees AAA83 7 / 19



Levels, minimal paths

Let H be an oriented tree.

we can assign levels to its vertices

maximum level = height of H.

An oriented path P is minimal, if its initial vertex has level 0, terminal
vertex level k, and for all other vertices 0 < level(v) < k

DD

DDZZ DD

DDZZ DDZZ

ZZ DDZZ DD

DD

DD
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Special trees

Definition

Let T be an oriented tree of height 1. A T-special tree is an oriented tree
obtained from T by replacing all edges by minimal paths of the same
height (preserving orientation).

A special triad is a T-special tree where

T =

•

•

•

•

•

•

•

dd
��

OO
��

::
��
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Example of a special triad
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Problem (Barto, Kozik, Maróti, Niven)

Is this the smallest NP-complete oriented tree?
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History of special trees

(Hell, Nešeťril, Zhu’90): a very specific subclass of triads, the special
triads; constructing a small NP-complete oriented tree

(Barto, Kozik, Maróti, Niven’08): dichotomy for special triads;
tractable cases are easy – either majority polymorphism or width 1

(Barto, JB’10): dichotomy for special polyads; tractable ones have
BW (Taylor ⇒ SD(∧)), but are not so easy
+ we can generate nice (counter-)examples in trees

(JB’12): dichotomy for a larger class of special trees; a new proof
using absorption techniques
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New result

Proposition (JB’12)

Let T be an oriented tree of height 1 satisfying one of these conditions:

1 maximum degree of T is ≤ 3

2 T has at most 3 vertices of degree > 2.

Then the CSP dichotomy holds for T-special trees.

More specifically, for all T-special trees H, if algH is Taylor, then it is
SD(∧).

Strategy of proof:

Absroption Theorem ⇒ algH can’t have many absorption-free
subalgebras. . .

. . . and they are all nice (have TSI operations of all arities)
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Absorption

Definition

A subalgebra C ≤ A is absorbing (CE A), if there exists an idempotent t
such that

t(C ,C , . . . ,C ,A) ⊆ C ,

t(C ,C , . . . ,A,C ) ⊆ C ,

...

t(A,C , . . . ,C ,C ) ⊆ C .

Example: A (finite) algebra A has a near-unanimity term iff {a}E A for
every a ∈ A.

A is absorption-free if it has no proper absorbing subalgebras.
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Jakub Buĺın (Charles Univ., Prague) CSP dichotomy for special oriented trees AAA83 13 / 19



Absorption

Definition

A subalgebra C ≤ A is absorbing (CE A), if there exists an idempotent t
such that

t(C ,C , . . . ,C ,A) ⊆ C ,

t(C ,C , . . . ,A,C ) ⊆ C ,

...

t(A,C , . . . ,C ,C ) ⊆ C .

Example: A (finite) algebra A has a near-unanimity term iff {a}E A for
every a ∈ A.

A is absorption-free if it has no proper absorbing subalgebras.
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Some facts about absorption

Theorem (”Absorption Theorem”, Barto, Kozik’10)

A,B finite algebras in a Taylor variety, E ≤S A× B linked. Then there
exist CE A, DE B such that E � C × D = C × D.

linked = connected as a bipartite graph

Lemma (Barto, Kozik)

Let A be a finite idempotent algebra. Then A is SD(∧) iff all
absorption-free subalgebras of A are SD(∧).

Proof: Follows from the Bounded Width algorithm.
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Sketch of the proof

Let T = (T ,E ) be an oriented tree of height 1,
H a T-special tree such that algH is Taylor.

A = {vertices of level 0} ≤ algH
B = {vertices of maximum level} ≤ algH
algH is SD(∧) iff both A and B are SD(∧) (this is what makes the
trees “special”)

E ≤S A× B (E is pp-definable), E is a tree

Lemma

Let A, B be finite idempotent algebras in a Taylor variety and
E ≤S A× B a tree such that

E +(a) and E−(b) are SD(∧) ∀a ∈ A∀b ∈ B.

Then A and B are SD(∧).
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Jakub Buĺın (Charles Univ., Prague) CSP dichotomy for special oriented trees AAA83 15 / 19



Sketch of the proof

Let T = (T ,E ) be an oriented tree of height 1,
H a T-special tree such that algH is Taylor.

A = {vertices of level 0} ≤ algH
B = {vertices of maximum level} ≤ algH
algH is SD(∧) iff both A and B are SD(∧) (this is what makes the
trees “special”)

E ≤S A× B (E is pp-definable), E is a tree

Lemma

Let A, B be finite idempotent algebras in a Taylor variety and
E ≤S A× B a tree such that

E +(a) and E−(b) are SD(∧) ∀a ∈ A∀b ∈ B.

Then A and B are SD(∧).
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Sketch of proof cont’d: constructing polymorphisms

It remains to prove that E -neigbourhoods of singletons are SD(∧). For
that we have an ad hoc construction:

Lemma

Let D ≤ E +(a) be absorption-free. There exists a binary idempotent
polymorphism ? of H such that ? � D is commutative (i.e., a 2-wnu).

Under some extra conditions (for example if D = E +(a)), for every k there
exists a k-ary idempotent polymorphism t such that t � D is totally
symmetric.

If maximum degree of T is ≤ 3, then either |D| ≤ 2 or D = E +(a). In
both cases D is SD(∧).
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Open problems

Problem

Prove that Taylor implies SD(∧) for all special trees.

Problem

Can these techniques be adapted for general orientes trees? Maybe just for
triads?

Problem

Was that the smallest NP-complete oriented tree?
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Thanks

Thank you for your attention!
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