Manuel Bodirsky

CNRS / LIX, École Polytechnique

Joint work with Michael Pinsker

March 2012

Birkhoff's Theorem

- Birkhoff's Theorem
- 2 Topological Birkhoff
- 3 Examples 1

- Birkhoff's Theorem
- 2 Topological Birkhoff
- 3 Examples 1
- 4 Primitive Positive Interpretations
- 5 Examples 2

- Birkhoff's Theorem
- 2 Topological Birkhoff
- 3 Examples 1
- 4 Primitive Positive Interpretations
- 5 Examples 2
- 6 Constraint Satisfaction Problems
- 7 Examples 3

Let ${\bf A}$ be an algebra (structure with a purely functional signature).

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Let A and B be algebras with the same signature τ . Natural candidate for homomorphism from Clo(A) to Clo(B):

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Let A and B be algebras with the same signature τ . Natural candidate for homomorphism from Clo(A) to Clo(B): map t^{A} to t^{B} , for all τ -terms t.

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Let A and B be algebras with the same signature τ . Natural candidate for homomorphism from Clo(A) to Clo(B): map t^{A} to t^{B} , for all τ -terms t. If well-defined, call this map the natural homomorphism from $Clo(A) \rightarrow Clo(B)$.

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Theorem (G. Birkhoff).

Let A, B be finite algebras with the same signature. Tfae:

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Theorem (G. Birkhoff).

Let A, B be finite algebras with the same signature. Tfae:

1 The natural homomorphism from $Clo(\mathbf{A})$ to $Clo(\mathbf{B})$ exists.

Let \mathbf{A} be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathcal{C} \to \mathcal{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathcal{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathcal{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Theorem (G. Birkhoff).

Let \mathbf{A}, \mathbf{B} be finite algebras with the same signature. Tfae:

- **1** The natural homomorphism from Clo(A) to Clo(B) exists.
- **2** $\mathbf{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathbf{A}).$
- **3** B is contained in the pseudo-variety generated by A.

Let ${\bf A}$ be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed from operations in A and projections.

 $\xi : \mathfrak{C} \to \mathfrak{D}$ (clone) homomorphism if for all *n*-ary $f \in \mathfrak{C}$ and all *m*-ary $g_1, \ldots, g_k \in \mathfrak{D}$: $\xi(f(g_1, \ldots, g_k)) = \xi(f)(\xi(g_1), \ldots, \xi(g_k))$

Theorem (G. Birkhoff).

Let \mathbf{A}, \mathbf{B} be finite algebras with the same signature. Tfae:

- **1** The natural homomorphism from $Clo(\mathbf{A})$ to $Clo(\mathbf{B})$ exists.
- **2** $\mathbf{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathbf{A}).$
- **3** B is contained in the pseudo-variety generated by A.

If $\mathbf A$ is infinite, have to replace $\mathsf{HSP}^{\mathsf{fin}}(\mathbf A)$ by $\mathsf{HSP}(\mathbf A)$

and pseudo-varieties by varieties – even when ${\bf B}$ is finite.

A permutation group *G* on a countable set *A* is called oligomorphic iff for each finite $n \ge 1$, the componentwise action of *G* on A^n has finitely many orbits.

A permutation group *G* on a countable set *A* is called oligomorphic iff for each finite $n \ge 1$, the componentwise action of *G* on A^n has finitely many orbits.

Examples.

. . . .

- Aut $((\mathbb{Q}; <))$.
- The automorphism group of the Random Graph.
- The automorphism group of the atomless Boolean algebra.

A permutation group *G* on a countable set *A* is called oligomorphic iff for each finite $n \ge 1$, the componentwise action of *G* on A^n has finitely many orbits.

Examples.

- Aut(($\mathbb{Q}; <$)).
- The automorphism group of the Random Graph.
- The automorphism group of the atomless Boolean algebra.

• • • •

An algebra \mathbf{A} is called oligomorphic iff the unary invertible operations in $Clo(\mathbf{A})$ form an oligomorphic permutation group.

A permutation group *G* on a countable set *A* is called oligomorphic iff for each finite $n \ge 1$, the componentwise action of *G* on A^n has finitely many orbits.

Examples.

- Aut $((\mathbb{Q}; <))$.
- The automorphism group of the Random Graph.
- The automorphism group of the atomless Boolean algebra.

• • • •

An algebra A is called oligomorphic iff the unary invertible operations in Clo(A) form an oligomorphic permutation group.

Fact

A polymorphism clone of a countable structure Γ is oligomorphic if and only if Γ is ω -categorical, i.e.,

every countable model of the first-order theory of Γ is isomorphic to $\Gamma.$

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Theorem.

Let \mathbf{A}, \mathbf{B} be oligomorphic or finite algebras with the same signature. Tfae:

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Theorem.

- Let \mathbf{A}, \mathbf{B} be oligomorphic or finite algebras with the same signature. Tfae:
 - **1** The natural homomorphism from Clo(A) to Clo(B) exists and is continuous.
 - **2** B is contained in the pseudo-variety generated by A.
 - $\textbf{3} \ \textbf{B} \in HSP^{fin}(\mathbf{A}).$

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Theorem.

- Let \mathbf{A}, \mathbf{B} be oligomorphic or finite algebras with the same signature. Tfae:
 - **1** The natural homomorphism from Clo(A) to Clo(B) exists and is continuous.
 - **2** B is contained in the pseudo-variety generated by A.

3 $\mathbf{B} \in HSP^{fin}(\mathbf{A}).$

Theorem can be strengthened:

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Theorem.

- Let \mathbf{A}, \mathbf{B} be oligomorphic or finite algebras with the same signature. Tfae:
 - The natural homomorphism from Clo(A) to Clo(B) exists and is continuous.
 - **2** B is contained in the pseudo-variety generated by A.

3 $\mathbf{B} \in HSP^{fin}(\mathbf{A}).$

Theorem can be strengthened:

It suffices that A is locally oligomorphic, that is, $\overline{Clo(A)}$ is olimorphic.

Clo(A) is subspace of the sum-space $\bigcup_k A^{A^k}$ (*A* taken to be discrete, A^{A^k} has product topology).

Theorem.

- Let \mathbf{A}, \mathbf{B} be oligomorphic or finite algebras with the same signature. Tfae:
 - The natural homomorphism from Clo(A) to Clo(B) exists and is continuous.
 - **2** B is contained in the pseudo-variety generated by A.

3 $\mathbf{B} \in HSP^{fin}(\mathbf{A}).$

Theorem can be strengthened:

- It suffices that A is locally oligomorphic, that is, $\overline{Clo(A)}$ is olimorphic.
- It suffices that B is finitely generated (oligomorphic algebras are finitely generated)

Let X, Y be countably infinite sets, and G be a group acting on Y.

Let X, Y be countably infinite sets, and G be a group acting on Y.

Define $f \sim g$ if $\exists \alpha \in G$ ($f = \alpha g$). Write Y^X/G for quotient of Y^X by ~.

Let *X*, *Y* be countably infinite sets, and *G* be a group acting on *Y*. Define $f \sim g$ if $\exists \alpha \in G$ ($f = \alpha g$). Write Y^X/G for quotient of Y^X by \sim . *Y* discrete space, Y^X has product topology, Y^X/G quotient topology.

Let X, Y be countably infinite sets, and G be a group acting on Y.

Define $f \sim g$ if $\exists \alpha \in G$ ($f = \alpha g$). Write Y^X/G for quotient of Y^X by ~.

Y discrete space, Y^X has product topology, Y^X/G quotient topology.

Proposition.

 Y^{χ}/G is compact iff the action of G on Y is oligomorphic.

Let X, Y be countably infinite sets, and G be a group acting on Y.

Define $f \sim g$ if $\exists \alpha \in G$ ($f = \alpha g$). Write Y^X/G for quotient of Y^X by ~.

Y discrete space, Y^X has product topology, Y^X/G quotient topology.

Proposition.

 Y^{χ}/G is compact iff the action of G on Y is oligomorphic.

Let X, Y be countably infinite sets, and G be a group acting on Y.

Define $f \sim g$ if $\exists \alpha \in G$ ($f = \alpha g$). Write Y^X/G for quotient of Y^X by ~.

Y discrete space, Y^X has product topology, Y^X/G quotient topology.

Proposition.

 Y^{χ}/G is compact iff the action of G on Y is oligomorphic.

Consequence: when A is locally oligomorphic, and G consists of the unary invertible operations in $\overline{\text{Clo}(A)}$, then $\overline{\text{Clo}(A)}^{(k)}/G$ is compact.

Want to prove: $\mathbf{B} \in \mathsf{HSP}^{\mathsf{fin}}(\mathbf{A})$ if and only if natural homo ξ : $\mathsf{Clo}(\mathbf{A}) \to \mathsf{Clo}(\mathbf{B})$ exists and is continuous.

Want to prove: $\mathbf{B} \in HSP^{fin}(\mathbf{A})$ if and only if natural homo ξ : $Clo(\mathbf{A}) \rightarrow Clo(\mathbf{B})$ exists and is continuous.

Lemma.

For all finite $F \subseteq B$ and all $k \ge 1$ there exists an $m \ge 1$ and $C \in A^{m \times k}$ s.t. for all *k*-ary $f, g \in \text{Clo}(\mathbf{A})$ we have that f(C) = g(C) implies $\xi(f)|_F = \xi(g)|_F$.

Want to prove: $\mathbf{B} \in HSP^{fin}(\mathbf{A})$ if and only if natural homo ξ : $Clo(\mathbf{A}) \rightarrow Clo(\mathbf{B})$ exists and is continuous.

Lemma.

For all finite $F \subseteq B$ and all $k \ge 1$ there exists an $m \ge 1$ and $C \in A^{m \times k}$ s.t. for all *k*-ary $f, g \in \text{Clo}(\mathbf{A})$ we have that f(C) = g(C) implies $\xi(f)|_F = \xi(g)|_F$.

There is an oligomorphic ${\bf A}$ and finite ${\bf B}$ with common signature such that ${\bf B}\in {\sf HSP}({\bf A}),$ but ${\bf B}\notin {\sf HSP}^{\sf fin}({\bf A}).$

There is an oligomorphic ${\bf A}$ and finite ${\bf B}$ with common signature such that ${\bf B}\in {\sf HSP}({\bf A}),$ but ${\bf B}\notin {\sf HSP}^{\sf fin}({\bf A}).$

A: countably infinite set Signature $\tau = \tau_1 \cup \tau_2$

There is an oligomorphic A and finite B with common signature such that $B \in HSP(A)$, but $B \notin HSP^{fin}(A)$.

A: countably infinite set Signature $\tau = \tau_1 \cup \tau_2$ S(A): permutations of A.

There is an oligomorphic ${\bf A}$ and finite ${\bf B}$ with common signature such that ${\bf B}\in {\sf HSP}({\bf A}),$ but ${\bf B}\notin {\sf HSP}^{\sf fin}({\bf A}).$

A: countably infinite set Signature $\tau = \tau_1 \cup \tau_2$ S(A): permutations of *A*. NS(A): injective non-surjective maps from $A \rightarrow A$.

There is an oligomorphic ${\bf A}$ and finite ${\bf B}$ with common signature such that ${\bf B}\in {\sf HSP}({\bf A}),$ but ${\bf B}\notin {\sf HSP}^{\sf fin}({\bf A}).$

A: countably infinite set Signature $\tau = \tau_1 \cup \tau_2$

S(A): permutations of A.

NS(A): injective non-surjective maps from $A \rightarrow A$.

	Domain	τ_1	τ_2
Α	Α	S (A)	NS(A)
в	{ 0 , 1 }	the identity	the operation $x \mapsto 0$

There is an oligomorphic ${\bf A}$ and finite ${\bf B}$ with common signature such that ${\bf B}\in {\sf HSP}({\bf A}),$ but ${\bf B}\notin {\sf HSP}^{\sf fin}({\bf A}).$

A: countably infinite set Signature $\tau = \tau_1 \cup \tau_2$

S(A): permutations of A.

NS(A): injective non-surjective maps from $A \rightarrow A$.

	Domain	τ_1	τ_2
Α	Α	S (A)	NS(A)
В	{ 0 , 1 }	the identity	the operation $x \mapsto 0$

(Thanks to Keith Kearnes)

The Link to Model Theory

The Link to Model Theory

A countably infinite structure Γ is called ω -categorical iff all countable models of the first-order theory of Γ are isomorphic to Γ .

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

For countable Γ, tfae:

• Γ is ω -categorical.

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

For countable Γ, tfae:

- **Г** is ω -categorical.
- Aut(Γ) is oligomorphic (equivalently, Pol(Γ) is oligomorphic).

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

For countable Γ, tfae:

- **Г** is ω -categorical.
- Aut(Γ) is oligomorphic (equivalently, Pol(Γ) is oligomorphic).
- A relation *R* is first-order definable in Γ if and only if *R* is preserved by all automorphisms in Aut(Γ).

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

For countable Γ, tfae:

- **\Gamma** is ω -categorical.
- Aut(Γ) is oligomorphic (equivalently, Pol(Γ) is oligomorphic).
- A relation R is first-order definable in Γ if and only if R is preserved by all automorphisms in Aut(Γ).

Examples. All homogeneous structures with finite relational signature (e.g. from the talks of Manfred Droste and John Truss!) are ω -categorical.

Quite some information about Γ is coded into its automorphism group – viewed as a topological group.

Quite some information about Γ is coded into its automorphism group – viewed as a topological group.

Theorem (Ahlbrandt-Ziegler'86).

Two ω -categorical structures Γ and Δ have isomorphic topological automorphism groups if and only if Γ and Δ are first-order bi-interpretable.

Quite some information about Γ is coded into its automorphism group – viewed as a topological group.

Theorem (Ahlbrandt-Ziegler'86).

Two ω -categorical structures Γ and Δ have isomorphic topological automorphism groups if and only if Γ and Δ are first-order bi-interpretable.

Theorem (B.-Junker'09).

Two ω -categorical structures Γ and Δ without constant endomorphisms have isomorphic topological endomorphism monoids if and only if Γ and Δ are existential-positive bi-interpretable.

Quite some information about Γ is coded into its automorphism group – viewed as a topological group.

Theorem (Ahlbrandt-Ziegler'86).

Two ω -categorical structures Γ and Δ have isomorphic topological automorphism groups if and only if Γ and Δ are first-order bi-interpretable.

Theorem (B.-Junker'09).

Two ω -categorical structures Γ and Δ without constant endomorphisms have isomorphic topological endomorphism monoids if and only if Γ and Δ are existential-positive bi-interpretable.

Question (B.-Junker): can this be further generalized to topological clones and primitive positive bi-interpretability?

Idea by example: $(\mathbb{Q};+,\cdot)$ has a first-order interpretation in $(\mathbb{Z};+,\cdot)$.

Idea by example: $(\mathbb{Q}; +, \cdot)$ has a first-order interpretation in $(\mathbb{Z}; +, \cdot)$.

A σ -structure Γ has an interpretation in a τ -structure Δ if there is a $d \ge 1$, and

- a τ -formula $\delta_I(x_1,\ldots,x_d)$,
- for each atomic σ -formula $\phi(y_1, \ldots, y_k)$ a τ -formula $\phi_l(\overline{x}_1, \ldots, \overline{x}_k)$,
- a surjective map $h: \delta_I(\Delta^d) \to \Gamma$,

such that for all atomic σ -formulas ϕ and all $\overline{a}_i \in \delta_I(\Delta^d)$

$$\Gamma \models \phi(h(\overline{a}_1),\ldots,h(\overline{a}_k)) \Leftrightarrow \Delta \models \phi_I(\overline{a}_1,\ldots,\overline{a}_k) .$$

Idea by example: $(\mathbb{Q}; +, \cdot)$ has a first-order interpretation in $(\mathbb{Z}; +, \cdot)$.

A σ -structure Γ has an interpretation in a τ -structure Δ if there is a $d \ge 1$, and

- a τ -formula $\delta_I(x_1,\ldots,x_d)$,
- for each atomic σ-formula $φ(y_1,...,y_k)$ a τ-formula $φ_I(\overline{x}_1,...,\overline{x}_k)$,
- a surjective map $h: \delta_I(\Delta^d) \to \Gamma$,

such that for all atomic σ -formulas ϕ and all $\overline{a}_i \in \delta_I(\Delta^d)$

$$\Gamma \models \phi(h(\overline{a}_1),\ldots,h(\overline{a}_k)) \Leftrightarrow \Delta \models \phi_I(\overline{a}_1,\ldots,\overline{a}_k) .$$

Definition.

An interpretation is primitive positive (pp) iff all the involved formulas are primitive positive, i.e., of the form

$$\exists x_1,\ldots,x_n (\psi_1 \wedge \cdots \wedge \psi_l)$$

where ψ_i are atomic, i.e. of the form x = y or $R(x_{i_1}, \ldots, x_{i_k})$ for $R \in \tau$.

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff $Pol(\Gamma) = Clo(A)$.

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff $Pol(\Gamma) = Clo(A)$. Consequences:

subalgebras of A are pp definable subsets of the domain of Γ.

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff $Pol(\Gamma) = Clo(A)$. Consequences:

- subalgebras of A are pp definable subsets of the domain of Γ.
- congruences of A are pp definable equivalence relations of Γ.

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff $Pol(\Gamma) = Clo(A)$. Consequences:

- subalgebras of A are pp definable subsets of the domain of Γ.
- congruences of A are pp definable equivalence relations of Γ.

Theorem (B.'07).

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

• Δ has a primitive positive interpretation in Γ .

Theorem (B.+Nešetřil'03).

Let Γ be ω -categorical. Then a relation *R* has a primitive positive definition in Γ if and only if *R* is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff $Pol(\Gamma) = Clo(A)$. Consequences:

- subalgebras of A are pp definable subsets of the domain of Γ.
- congruences of A are pp definable equivalence relations of Γ.

Theorem (B.'07).

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a primitive positive interpretation in Γ .
- For every polymorphism algebra A of Γ there is an algebra $B \in HSP^{fin}(A)$ such that $Clo(B) \subseteq Pol(\Delta)$.

A reduct of a structure Δ is a structure obtained from Δ by dropping some of the relations from Δ .

A reduct of a structure Δ is a structure obtained from Δ by dropping some of the relations from Δ .

Theorem.

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

• Δ has a primitive positive interpretation in Γ .

A reduct of a structure Δ is a structure obtained from Δ by dropping some of the relations from Δ .

Theorem.

Let Γ be finite or ω -categorical, and let Δ be arbitrary. Tfae:

- Δ has a primitive positive interpretation in Γ .
- Δ is the reduct of a finite or ω-categorical structure Δ' such that there exists a continuous homomorphism from Pol(Γ) to Pol(Γ') whose image is dense in Pol(Δ').

Two structures Γ and Δ are mutually pp interpretable iff Δ has a pp interpretation in Γ , and vice versa.

Two structures Γ and Δ are mutually pp interpretable iff Δ has a pp interpretation in Γ , and vice versa.

Mutually pp interpretable structures need not have the same topological polymorphism clone!

Say that mutually interpretable Γ and Δ are pp bi-interpretable iff the coordinate maps h_1 and h_2 of the pp interpretations are such that

$$\begin{aligned} x &= h_1(h_2(y_{1,1},\ldots,y_{1,d_2}),\ldots,h_2(y_{d_1,1},\ldots,y_{d_1,d_2}))\\ \text{and } x &= h_2(h_1(y_{1,1},\ldots,y_{d_1,1}),\ldots,h_1(y_{1,d_2},\ldots,y_{d_1,d_2})) \end{aligned}$$

are primitive positive definable in Γ and Δ , respectively.

Say that mutually interpretable Γ and Δ are pp bi-interpretable iff the coordinate maps h_1 and h_2 of the pp interpretations are such that

$$\begin{aligned} x &= h_1(h_2(y_{1,1},\ldots,y_{1,d_2}),\ldots,h_2(y_{d_1,1},\ldots,y_{d_1,d_2}))\\ \text{and } x &= h_2(h_1(y_{1,1},\ldots,y_{d_1,1}),\ldots,h_1(y_{1,d_2},\ldots,y_{d_1,d_2})) \end{aligned}$$

are primitive positive definable in Γ and Δ , respectively.

Answer to question of B.-Junker:

Theorem.

Let Γ and Δ be ω -categorical. Tfae:

Pol(Γ) and Pol(Δ) are isomorphic as topological clones;
Bi-interpretability

Say that mutually interpretable Γ and Δ are pp bi-interpretable iff the coordinate maps h_1 and h_2 of the pp interpretations are such that

$$\begin{aligned} x &= h_1(h_2(y_{1,1},\ldots,y_{1,d_2}),\ldots,h_2(y_{d_1,1},\ldots,y_{d_1,d_2}))\\ \text{and } x &= h_2(h_1(y_{1,1},\ldots,y_{d_1,1}),\ldots,h_1(y_{1,d_2},\ldots,y_{d_1,d_2})) \end{aligned}$$

are primitive positive definable in Γ and Δ , respectively.

Answer to question of B.-Junker:

Theorem.

Let Γ and Δ be ω -categorical. Tfae:

- **Pol**(Γ) and Pol(Δ) are isomorphic as topological clones;
- Γ and Δ are primitive positive bi-interpretable;

Bi-interpretability

Say that mutually interpretable Γ and Δ are pp bi-interpretable iff the coordinate maps h_1 and h_2 of the pp interpretations are such that

$$\begin{aligned} x &= h_1(h_2(y_{1,1},\ldots,y_{1,d_2}),\ldots,h_2(y_{d_1,1},\ldots,y_{d_1,d_2}))\\ \text{and } x &= h_2(h_1(y_{1,1},\ldots,y_{d_1,1}),\ldots,h_1(y_{1,d_2},\ldots,y_{d_1,d_2})) \end{aligned}$$

are primitive positive definable in Γ and Δ , respectively.

Answer to question of B.-Junker:

Theorem.

Let Γ and Δ be ω -categorical. Tfae:

- **Pol**(Γ) and Pol(Δ) are isomorphic as topological clones;
- Γ and Δ are primitive positive bi-interpretable;
- Γ has a polymorphism algebra A and Δ has a polymorphism algebra B such that $HSP^{fin}(A) = HSP^{fin}(B)$.

•
$$(\mathbb{N}^2; \{((u_1, u_2), (v_1, v_2)) \mid u_2 = v_1\})$$
 and $(\mathbb{N}; =)$ are primitive positive bi-interpretable.

- $(\mathbb{N}^2; \{((u_1, u_2), (v_1, v_2)) \mid u_2 = v_1\})$ and $(\mathbb{N}; =)$ are primitive positive bi-interpretable.
- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₁ = v₁}) and
 (ℕ; =) are not primitive positive bi-interpretable.

- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₂ = v₁}) and
 (ℕ;=) are primitive positive bi-interpretable.
- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₁ = v₁}) and
 (ℕ; =) are not primitive positive bi-interpretable.
- Consider Γ := (Q; <, P) where P ⊆ Q is such that both P and Q \ P are dense in (Q; <).</p>

- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₂ = v₁}) and
 (ℕ;=) are primitive positive bi-interpretable.
- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₁ = v₁}) and
 (ℕ; =) are not primitive positive bi-interpretable.
- Consider Γ := (Q; <, P) where P ⊆ Q is such that both P and Q \ P are dense in (Q; <). Let Δ be substructure induced by P in Γ.</p>

- (ℕ²;{((u₁, u₂), (v₁, v₂)) | u₂ = v₁}) and
 (ℕ;=) are primitive positive bi-interpretable.
- $(\mathbb{N}^2; \{((u_1, u_2), (v_1, v_2)) | u_1 = v_1\})$ and $(\mathbb{N}; =)$ are not primitive positive bi-interpretable.
- Consider Γ := (Q; <, P) where P ⊆ Q is such that both P and Q \ P are dense in (Q; <). Let Δ be substructure induced by P in Γ.
 ξ: Aut(Γ) → Aut(Δ) defined by f ↦ f|_P is continuous homomorphism whose image is dense in Aut(Δ).

- $(\mathbb{N}^2; \{((u_1, u_2), (v_1, v_2)) \mid u_2 = v_1\})$ and $(\mathbb{N}; =)$ are primitive positive bi-interpretable.
- $(\mathbb{N}^2; \{((u_1, u_2), (v_1, v_2)) | u_1 = v_1\})$ and $(\mathbb{N}; =)$ are not primitive positive bi-interpretable.
- Consider Γ := (Q; <, P) where P ⊆ Q is such that both P and Q \ P are dense in (Q; <). Let Δ be substructure induced by P in Γ.
 ξ: Aut(Γ) → Aut(Δ) defined by f ↦ f|_P is continuous homomorphism whose image is dense in Aut(Δ).
 But ξ is not surjective! (D. Macpherson).

Let Γ be a structure with a finite relational signature τ .

Definition.

 $\mathsf{CSP}(\Gamma)$ is the computational problem to decide whether a given finite τ -structure homomorphically maps to Γ .

Let Γ be a structure with a finite relational signature τ .

Definition.

 $CSP(\Gamma)$ is the computational problem to decide whether a given finite τ -structure homomorphically maps to Γ .

Example. CSP($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) is the problem called positive 1-in-3-3SAT in Garey Johnson.

Let Γ be a structure with a finite relational signature τ .

Definition.

 $CSP(\Gamma)$ is the computational problem to decide whether a given finite τ -structure homomorphically maps to Γ .

Example. $CSP(\{0, 1\}; \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\})$ is the problem called positive 1-in-3-3SAT in Garey Johnson.

Fact: When there is a primitive positive interpretation of Γ in Δ , then there is a polynomial-time reduction from $CSP(\Gamma)$ to $CSP(\Delta)$.

Let Γ be a structure with a finite relational signature τ .

Definition.

 $CSP(\Gamma)$ is the computational problem to decide whether a given finite τ -structure homomorphically maps to Γ .

Example. CSP($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) is the problem called positive 1-in-3-3SAT in Garey Johnson.

Fact: When there is a primitive positive interpretation of Γ in Δ , then there is a polynomial-time reduction from $CSP(\Gamma)$ to $CSP(\Delta)$.

Theorem 2.

For ω -categorical Γ , the complexity of CSP(Γ) only depends on the topological polymorphism clone of Γ .

(answering question from Fields-Institute Summer on CSPs and Algebra'11)

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

 $\mathsf{CSP}(\Gamma)$ is NP-hard since there is a continuous homomorphism $\xi:\mathsf{Pol}(\Gamma)\to \mathbf{1}$:

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to 1.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

CSP(Γ) is NP-hard since there is a continuous homomorphism ξ : Pol(Γ) → 1: For any *f* ∈ Pol(Γ) of arity *k*, one of the following holds:

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

CSP(Γ) is NP-hard since there is a continuous homomorphism ξ: Pol(Γ) → 1: For any *f* ∈ Pol(Γ) of arity *k*, one of the following holds:

(1)
$$\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq(x, y) \land (x_d < y_d) \Rightarrow f(x) < f(y))$$

(2) $\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq(x, y) \land (x_d < y_d) \Rightarrow f(x) > f(y))$

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

CSP(Γ) is NP-hard since there is a continuous homomorphism ξ : Pol(Γ) → 1: For any *f* ∈ Pol(Γ) of arity *k*, one of the following holds:

(1)
$$\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq (x, y) \land (x_d < y_d) \Rightarrow f(x) < f(y))$$

(2)
$$\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq(x, y) \land (x_d < y_d) \Rightarrow f(x) > f(y))$$

Since *d* is clearly unique for each *f*, setting $\xi(f) := \pi_d^k$ defines a function ξ from Pol(Γ) onto 1.

Define 1 := Clo(A) for any algebra A with at least two elements where all operations are projections.

Write π_i^k , $i \le k$, for *k*-ary elements of 1; topology of 1 is discrete.

Example: Pol($\{0, 1\}$; $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$) isomorphic to **1**.

Empirically: For all known ω -categorical structures Γ where $CSP(\Gamma)$ is NP-complete there is a continuous clone homomorphism from $Pol(\Gamma)$ to 1.

Example: $\Gamma = (\mathbb{Q}; \{(x, y, z) \in \mathbb{Q}^3 \mid x < y < z \lor z < y < x\})$

 $CSP(\Gamma)$ is the so-called Betweenness problem (Garey+Johnson,Opatrny).

CSP(Γ) is NP-hard since there is a continuous homomorphism ξ : Pol(Γ) → 1: For any *f* ∈ Pol(Γ) of arity *k*, one of the following holds:

(1)
$$\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq (x, y) \land (x_d < y_d) \Rightarrow f(x) < f(y))$$

(2)
$$\exists d \in \{1, \ldots, k\} \forall x, y \in \Gamma^k : (\neq (x, y) \land (x_d < y_d) \Rightarrow f(x) > f(y))$$

Since *d* is clearly unique for each *f*, setting $\xi(f) := \pi_d^k$ defines a function ξ from Pol(Γ) onto 1. Straightforward: ξ is continuous homomorphism.

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

Definition.

- Γ has the small index property
- if every subgroup of $Aut(\Gamma)$ of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Gamma)$ to $S(\mathbb{N})$ is continuous.

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

Definition.

Γ has the small index property

if every subgroup of $Aut(\Gamma)$ of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Gamma)$ to $S(\mathbb{N})$ is continuous.

Small index property has been verified for

• $(\mathbb{N};=)$ (Dixon+Neumann+Thomas'86)

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

Definition.

Γ has the small index property

if every subgroup of $Aut(\Gamma)$ of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Gamma)$ to $S(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N};=)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

Definition.

- Γ has the small index property
- if every subgroup of $Aut(\Gamma)$ of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Gamma)$ to $S(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N};=)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the Random graph (Hodges, Hodkinson, Lascar, Shelah'93)

In which situations does the abstract polymorphism clone of Γ determine the topological polymorphism clone of Γ ?

For automorphism groups instead of polymorphism clones, this question has been studied in model theory.

Definition.

- Γ has the small index property
- if every subgroup of $Aut(\Gamma)$ of index less than 2^{\aleph_0} is open.

Equivalent: every homomorphism from $Aut(\Gamma)$ to $S(\mathbb{N})$ is continuous.

Small index property has been verified for

- $(\mathbb{N};=)$ (Dixon+Neumann+Thomas'86)
- $(\mathbb{Q}; <)$ and the atomless Boolean algebra (Truss'89)
- the Random graph (Hodges, Hodkinson, Lascar, Shelah'93)
- and the Henson graphs (Herwig'98).

There are (assuming AC) two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

There are (assuming AC) two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

For complexity questions about the CSP, we can probably assume that all ω -categorical structures have the small index property:

There are (assuming AC) two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

For complexity questions about the CSP, we can probably assume that all ω -categorical structures have the small index property:

 Every Baire measurable homomorphism between Polish groups is continuous (see e.g. Kechris' book).

There are (assuming AC) two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

For complexity questions about the CSP, we can probably assume that all ω -categorical structures have the small index property:

- Every Baire measurable homomorphism between Polish groups is continuous (see e.g. Kechris' book).
- There exists a model of ZF+DC where every set is Baire measurable (Shelah'84).

There are (assuming AC) two ω -categorical structures whose automorphism groups are isomorphic as abstract groups but not as topological groups (Evans+Hewitt'90).

For complexity questions about the CSP, we can probably assume that all ω -categorical structures have the small index property:

- Every Baire measurable homomorphism between Polish groups is continuous (see e.g. Kechris' book).
- There exists a model of ZF+DC where every set is Baire measurable (Shelah'84).

But this doesn't answer my questions for polymorphism clones:

- when does the abstract clone determine the topological one?
- does the complexity of CSP(Γ) only depend on the abstract clone of Γ?

Topological Birkhoff, Manuel Bodirsky and Michael Pinsker, http://arxiv.org/abs/1203.1876, 2012.