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Birkhoff’s HSP Theorem
Let A be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed
from operations in A and projections.

ξ : C → D (clone) homomorphism if for all n-ary f ∈ C and all m-ary
g1, . . . ,gk ∈ D: ξ(f (g1, . . . ,gk )) = ξ(f )(ξ(g1), . . . , ξ(gk ))
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Clo(A): the clone of A, i.e., the set of all operations that can be composed
from operations in A and projections.

ξ : C → D (clone) homomorphism if for all n-ary f ∈ C and all m-ary
g1, . . . ,gk ∈ D: ξ(f (g1, . . . ,gk )) = ξ(f )(ξ(g1), . . . , ξ(gk ))

Let A and B be algebras with the same signature τ.
Natural candidate for homomorphism from Clo(A) to Clo(B):
map tA to tB, for all τ-terms t .
If well-defined, call this map the natural homomorphism from
Clo(A) → Clo(B).
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Birkhoff’s HSP Theorem
Let A be an algebra (structure with a purely functional signature).
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Theorem (G. Birkhoff).

Let A, B be finite algebras with the same signature. Tfae:

1 The natural homomorphism from Clo(A) to Clo(B) exists.

2 B ∈ HSPfin(A).

3 B is contained in the pseudo-variety generated by A.
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Birkhoff’s HSP Theorem
Let A be an algebra (structure with a purely functional signature).

Clo(A): the clone of A, i.e., the set of all operations that can be composed
from operations in A and projections.

ξ : C → D (clone) homomorphism if for all n-ary f ∈ C and all m-ary
g1, . . . ,gk ∈ D: ξ(f (g1, . . . ,gk )) = ξ(f )(ξ(g1), . . . , ξ(gk ))

Theorem (G. Birkhoff).

Let A, B be finite algebras with the same signature. Tfae:

1 The natural homomorphism from Clo(A) to Clo(B) exists.

2 B ∈ HSPfin(A).

3 B is contained in the pseudo-variety generated by A.

If A is infinite, have to replace HSPfin(A) by HSP(A)

and pseudo-varieties by varieties – even when B is finite.
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Oligomorphic Algebras

A permutation group G on a countable set A is called oligomorphic iff for each
finite n ≥ 1, the componentwise action of G on An has finitely many orbits.

Examples.

Aut((Q;<)).

The automorphism group of the Random Graph.

The automorphism group of the atomless Boolean algebra.

. . .

An algebra A is called oligomorphic iff the unary invertible operations in
Clo(A) form an oligomorphic permutation group.

Fact
A polymorphism clone of a countable structure Γ is oligomorphic
if and only if Γ is ω-categorical, i.e.,
every countable model of the first-order theory of Γ is isomorphic to Γ .
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Topological Birkhoff

Clo(A) is subspace of the sum-space
⋃

k AAk

(A taken to be discrete, AAk
has product topology).

Theorem.
Let A, B be oligomorphic or finite algebras with the same signature. Tfae:

1 The natural homomorphism from Clo(A) to Clo(B) exists and is
continuous.

2 B is contained in the pseudo-variety generated by A.

3 B ∈ HSPfin(A).

Theorem can be strengthened:

It suffices that A is locally oligomorphic, that is, Clo(A) is olimorphic.

It suffices that B is finitely generated (oligomorphic algebras are finitely
generated)
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Ideas from the Proof, 1

Let X ,Y be countably infinite sets, and G be a group acting on Y .

Define f ∼ g if ∃α ∈ G (f = αg). Write Y X/G for quotient of Y X by ∼.

Y discrete space, Y X has product topology, Y X/G quotient topology.

Proposition.

Y X/G is compact iff the action of G on Y is oligomorphic.
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Ideas from the Proof, 1

Let X ,Y be countably infinite sets, and G be a group acting on Y .

Define f ∼ g if ∃α ∈ G (f = αg). Write Y X/G for quotient of Y X by ∼.

Y discrete space, Y X has product topology, Y X/G quotient topology.

Proposition.

Y X/G is compact iff the action of G on Y is oligomorphic.

Consequence: when A is locally oligomorphic, and G consists of the unary

invertible operations in Clo(A), then Clo(A)
(k)
/G is compact.

Topological Birkhoff Manuel Bodirsky 6



Ideas from the Proof, 2
Want to prove: B ∈ HSPfin(A) if and only if
natural homo ξ : Clo(A) → Clo(B) exists and is continuous.

Lemma.

For all finite F ⊆ B and all k ≥ 1 there exists an m ≥ 1 and C ∈ Am×k s.t.
for all k -ary f ,g ∈ Clo(A) we have that f (C) = g(C) implies ξ(f )|F = ξ(g)|F .

m

k

S(Am) B

C
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Example 1

There is an oligomorphic A and finite B with common signature such that
B ∈ HSP(A), but B /∈ HSPfin(A).

A: countably infinite set
Signature τ = τ1 ∪ τ2

S(A): permutations of A.
NS(A): injective non-surjective maps from A → A.

Domain τ1 τ2

A A S(A) NS(A)
B {0,1} the identity the operation x 7→ 0

(Thanks to Keith Kearnes)
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The Link to Model Theory

A countably infinite structure Γ is called ω-categorical iff all countable models
of the first-order theory of Γ are isomorphic to Γ .

Theorem (Engeler,Ryll-Nardzewski,Svenonius).

For countable Γ , tfae:

Γ is ω-categorical.

Aut(Γ) is oligomorphic (equivalently, Pol(Γ) is oligomorphic).

A relation R is first-order definable in Γ if and only if R is preserved by all
automorphisms in Aut(Γ).

Examples. All homogeneous structures with finite relational signature (e.g.
from the talks of Manfred Droste and John Truss!) are ω-categorical.
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Ahlbrandt-Ziegler

Quite some information about Γ is coded into its automorphism group –
viewed as a topological group.

Theorem (Ahlbrandt-Ziegler’86).

Two ω-categorical structures Γ and ∆ have isomorphic topological
automorphism groups if and only if Γ and ∆ are first-order bi-interpretable.

Theorem (B.-Junker’09).

Two ω-categorical structures Γ and ∆ without constant endomorphisms have
isomorphic topological endomorphism monoids
if and only if Γ and ∆ are existential-positive bi-interpretable.

Question (B.-Junker): can this be further generalized to topological clones
and primitive positive bi-interpretability?
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Interpretations

Idea by example: (Q; +, ·) has a first-order interpretation in (Z; +, ·).

A σ-structure Γ has an interpretation in a τ-structure ∆ if there is a d ≥ 1, and

a τ-formula δI(x1, . . . , xd ),

for each atomic σ-formula φ(y1, . . . , yk ) a τ-formula φI(x1, . . . , xk ),

a surjective map h : δI(∆
d ) → Γ ,

such that for all atomic σ-formulas φ and all ai ∈ δI(∆
d )

Γ |= φ(h(a1), . . . ,h(ak )) ⇔ ∆ |= φI(a1, . . . ,ak ) .

Definition.
An interpretation is primitive positive (pp) iff all the involved formulas are
primitive positive, i.e., of the form

∃x1, . . . , xn (ψ1 ∧ · · ·∧ψl)

where ψi are atomic, i.e. of the form x = y or R(xi1 , . . . , xik ) for R ∈ τ.
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PP Interpretations and Pseudo-Varieties

Theorem (B.+Nešetřil’03).

Let Γ be ω-categorical. Then a relation R has a primitive positive definition in
Γ if and only if R is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff Pol(Γ) = Clo(A).
Consequences:

subalgebras of A are pp definable subsets of the domain of Γ .

congruences of A are pp definable equivalence relations of Γ .

Theorem (B.’07).

Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a primitive positive interpretation in Γ .

For every polymorphism algebra A of Γ there is an algebra
B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).
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Let Γ be ω-categorical. Then a relation R has a primitive positive definition in
Γ if and only if R is preserved by all polymorphisms of Γ .

A is a polymorphism algebra of Γ iff Pol(Γ) = Clo(A).

Consequences:

subalgebras of A are pp definable subsets of the domain of Γ .

congruences of A are pp definable equivalence relations of Γ .

Theorem (B.’07).

Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a primitive positive interpretation in Γ .

For every polymorphism algebra A of Γ there is an algebra
B ∈ HSPfin(A) such that Clo(B) ⊆ Pol(∆).

Topological Birkhoff Manuel Bodirsky 12



PP Interpretations and Pseudo-Varieties

Theorem (B.+Nešetřil’03).
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PP Interpretations and Topological Clones

A reduct of a structure ∆ is a structure obtained from ∆ by dropping some of
the relations from ∆.

Theorem.
Let Γ be finite or ω-categorical, and let ∆ be arbitrary. Tfae:

∆ has a primitive positive interpretation in Γ .

∆ is the reduct of a finite or ω-categorical structure ∆ ′ such that there
exists a continuous homomorphism from Pol(Γ) to Pol(Γ ′) whose image
is dense in Pol(∆ ′).

Pol(Γ)

Pol(Δ)

Pol(Δ')
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Bi-interpretability

Two structures Γ and ∆ are mutually pp interpretable iff ∆ has a pp
interpretation in Γ , and vice versa.
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Bi-interpretability

Two structures Γ and ∆ are mutually pp interpretable iff ∆ has a pp
interpretation in Γ , and vice versa.

Mutually pp interpretable structures need not have the same topological
polymorphism clone!
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Bi-interpretability

Say that mutually interpretable Γ and ∆ are pp bi-interpretable iff the
coordinate maps h1 and h2 of the pp interpretations are such that

x = h1(h2(y1,1, . . . , y1,d2), . . . ,h2(yd1,1, . . . , yd1,d2))

and x = h2(h1(y1,1, . . . , yd1,1), . . . ,h1(y1,d2 , . . . , yd1,d2))

are primitive positive definable in Γ and ∆, respectively.
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Examples 2

(N2; {((u1,u2), (v1, v2)) | u2 = v1}) and
(N; =) are primitive positive bi-interpretable.

(
N2; {((u1,u2), (v1, v2)) |u1 = v1}

)
and

(N; =) are not primitive positive bi-interpretable.

Consider Γ := (Q;<,P) where P ⊆ Q is such that both P and Q \ P are
dense in (Q;<). Let ∆ be substructure induced by P in Γ .
ξ : Aut(Γ) → Aut(∆) defined by f 7→ f |P is continuous homomorphism
whose image is dense in Aut(∆).
But ξ is not surjective! (D. Macpherson).
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Constraint Satisfaction Problems

Let Γ be a structure with a finite relational signature τ.

Definition.

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure homomorphically maps to Γ .

Example. CSP({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) is the problem called
positive 1-in-3-3SAT in Garey Johnson.

Fact: When there is a primitive positive interpretation of Γ in ∆, then there is a
polynomial-time reduction from CSP(Γ) to CSP(∆).

Theorem 2.

For ω-categorical Γ , the complexity of CSP(Γ) only depends on the
topological polymorphism clone of Γ .

(answering question from Fields-Institute Summer on CSPs and Algebra’11)
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Complexity Classification

Define 1 := Clo(A) for any algebra A with at least two elements where all
operations are projections.

Write πk
i , i ≤ k , for k -ary elements of 1; topology of 1 is discrete.

Example: Pol({0,1}; {(1,0,0), (0,1,0), (0,0,1)}) isomorphic to 1.

Empirically: For all known ω-categorical structures Γ where CSP(Γ) is
NP-complete there is a continuous clone homomorphism from Pol(Γ) to 1.

Example: Γ = (Q; {(x , y , z) ∈ Q3 | x < y < z ∨ z < y < x})
CSP(Γ) is the so-called Betweenness problem (Garey+Johnson,Opatrny).

CSP(Γ) is NP-hard since there is a continuous homomorphism ξ : Pol(Γ) → 1:
For any f ∈ Pol(Γ) of arity k , one of the following holds:

(1) ∃d ∈ {1, . . . , k } ∀x , y ∈ Γ k :
(
6=(x , y)∧ (xd < yd ) ⇒ f (x) < f (y)

)
(2) ∃d ∈ {1, . . . , k } ∀x , y ∈ Γ k :

(
6=(x , y)∧ (xd < yd ) ⇒ f (x) > f (y)

)
Since d is clearly unique for each f , setting ξ(f ) := πk

d defines a function ξ
from Pol(Γ) onto 1. Straightforward: ξ is continuous homomorphism.
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Automatic Continuity

In which situations does the abstract polymorphism clone of Γ determine the
topological polymorphism clone of Γ?

For automorphism groups instead of polymorphism clones, this question has
been studied in model theory.

Definition.
Γ has the small index property
if every subgroup of Aut(Γ) of index less than 2ℵ0 is open.

Equivalent: every homomorphism from Aut(Γ) to S(N) is continuous.

Small index property has been verified for

(N; =) (Dixon+Neumann+Thomas’86)

(Q;<) and the atomless Boolean algebra (Truss’89)

the Random graph (Hodges, Hodkinson, Lascar, Shelah’93)

and the Henson graphs (Herwig’98).
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Reconstruction

There are (assuming AC) two ω-categorical structures whose automorphism
groups are isomorphic as abstract groups but not as topological groups
(Evans+Hewitt’90).

For complexity questions about the CSP, we can probably assume that all
ω-categorical structures have the small index property:

Every Baire measurable homomorphism between Polish groups is
continuous (see e.g. Kechris’ book).

There exists a model of ZF+DC where every set is Baire measurable
(Shelah’84).

But this doesn’t answer my questions for polymorphism clones:

when does the abstract clone determine the topological one?

does the complexity of CSP(Γ) only depend on the abstract clone of Γ?
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