## Dualizability of Automatic Algebras

W. Bentz, B. A. Davey, J. G. Pitkethly, and R. Willard

Centro de Álgebra da Universidade de Lisboa
La Trobe University
University of Waterloo

## Introduction

## "A dozen easy problems"

- Presentation by McNulty at the 2010 AMS Special Session in St. Paul
- Contains 6 new and 6 revived problems in Universal Algebra
- Important footnote:
"Well, easily formulated ..."


## Question 6

Automatic Algebra Problems

- "Which finite automatic algebras are dualizable?"
- "Is the automatic algebra drawn below dualizable?"



## What are Automatic Algebras?

- Start with a (partial) automaton without initial and terminal states
- Transition labels are colour coded (for this presentation)



## Automatic Algebras - Elements

- States:
- Transition types (letters):
- Default state:

(3)


## Automatic Algebras <br> One binary operation。

- If letter a induces a transition from state $n$ to state $m$, let $n \cdot a=m$
- $1 \cdot b=2$
- $2 \cdot y=2$
- 2 or $=3$



## Automatic Algebras <br> One binary operation。

- All other products evaluate to the default state (0)
$00^{\circ} a=0$
$-b \circ b=0$
- $2 \cdot 3=0$
$-2 \cdot b=0$



## What are Dualities?

o Well ....

- Ross Willard once introduced them like this


## R. Willard, "Four unsolved problems in

 congruence-permutable varieties", Nashville, 2007
## Definition

A finite algebra $\mathbb{A} \underline{M}$ is dualizable if

- there exists an "alter ego" $\underset{\sim}{M}$...
- ... partial operations ... relations ... discrete topology ...
- ... ISP and IS ${ }_{\mathrm{c}} \mathbf{P}^{+} \ldots$
- ...contravariant hom-functors ...
- ...dual adjunction ( $D, E, e, \varepsilon$ ) $\ldots$
- AARRRGGHH!!! STOP THE INSANITY!!


## Why dualities for automatic algebras?

- Lyndon's example of an algebra that is not finitely based is an automatic algebra
- Automatic algebras have been examined for finite basedness by Boozer and have given interesting examples
- Dualizability is another finiteness condition
- Its relationship with finite basedness is not well-known


## Why ? (2)

- This algebra is non-finitely based, but "just fails" to be inherently non-finitely based



## Results

- If an automatic algebra is dualizable then every letter acts as whiskery cycles
- If a letter acts otherwise, it is inherently non-dualizable (i.e. all its superalgebras are non-dualizable)


## Whiskery Cycles



## Inherently non-dualizable



## Classification

- An algebra with exactly one letter is dualizable if and only if the letter acts as whiskery cycles


## Results

- If each letter acts as a total constant function, then the algebra is dualizable



## Results

- If each edge is a loop, then the algebra is dualizable



## Classification

- All automatic algebras with exactly one non-zero state are dualizable
- An algebra with exactly two non-zero states is dualizable if and only if
o each letter acts as whiskery cycles
o the algebra is pseudo-commutative, i.e. satisfies $((x \circ y) \circ z)^{\circ} \cdot w=((x \circ z) \circ y) \circ w$


## Classification

- All dualizable automatic algebras with 2 states and at least 2 letters are (essentially)



## Classification

- All dualizable automatic algebras with 2 states and at least 2 letters are (essentially)



## Classification

- All dualizable automatic algebras with 2 states and at least 2 letters are (essentially)



## Classification

- All dualizable automatic algebras with 2 states and at least 2 letters are (essentially)



## Classification

- All dualizable automatic algebras with 2 states and at least 2 letters are (essentially)



## Unfortunately ...

o whiskery cycles + pseudo commutativity does not work if there are more states


Non-dualizable (but not inherently so!)

## Commutative permutations

- Each letter acts as a permutation of the non-zero states and all such actions commute
- So we can identify the letters with members of an Abelian group of permutations


## Result

- For an automaton as above, if the letter actions form a coset of the corresponding Abelian permutation group, then the algebra is dualizable
- In particular,
o if there is just one permutation, the algebra is dualizable
o if the letter actions form an Abelian group the algebra is dualizable


## Unfortunately ...

o the converse is false


## Negative Results

- For connected automata, "certain" nonsingleton cosets must be present among the letter actions in dualizable algebras
- In particular, if the algebra has at least two distinctly acting letters, but less then needed to form the smallest non-trivial coset, the algebra is not dualizable


## How difficult is the (easily formulated) problem?

- We are able to construct a chain of superalgebras that are alternatively dualizable and non-dualizable
- Such a chain has previously only been constructed in the class of unary algebras


## Thank you!

