DECOMPOSING DISTRIBUTIVE LATTICES UP TO POLYNOMIAL EQUIVALENCE USING RST

Mike Behrisch Friedrich Martin Schneider

Novi Sad, Serbia, 17 March 2012

Outline

(1) Theoretical background from Relational Structure Theory
(2) Polynomial expansions of distributive lattices

Outline

(1) Theoretical background from Relational Structure Theory
(2) Polynomial expansions of distributive lattices

Localising finite algebras

- (finite, nonempty) algebras $\mathbf{A}=\langle A ; F\rangle$, where

$$
F \subseteq \mathrm{O}_{A}=\bigcup_{n \in \mathbb{N}} A^{A^{n}}
$$

- analysis up to term equivalence, i.e. equality of $\mathrm{Clo}(\mathbf{A})=\operatorname{Term}(\mathbf{A})$
- restriction of algebras to subsets $U \subseteq A$ $\left.\mathbf{A}\right|_{U}:=\left\langle U ;\left\{f \uparrow_{U \operatorname{arar} f}^{U} \mid f \in \operatorname{Clo}(\mathbf{A}) \wedge f\left[U^{\text {ar } f}\right] \subseteq U\right\}\right\rangle$
- in fact, not ordinary subsets,

Definition (neighbourhood)
$U \in$ Neigh $\mathbf{A}: \Longleftrightarrow U=e[A]$ for some
$e \in \operatorname{Idem} \mathbf{A}:=\left\{g \in \operatorname{Clo}^{(1)}(\mathbf{A}) \text { dismposing } g \circ g=g\right\}_{\text {cices }}$ using RST

Localising finite algebras via relations

- relational counterpart $\mathbf{A}=\langle A ; \operatorname{lnv} \mathbf{A}\rangle$, where
$\operatorname{Inv} \mathbf{A}:=\bigcup_{m \in \mathbb{N}_{+}} \operatorname{Sub} \mathbf{A}^{m}$
- restriction to neighbourhoods $U \in \operatorname{Neigh} \mathbf{A}$ $\mathbf{A}^{\boldsymbol{\top}} \mathrm{u}:=\langle U ;\{S \upharpoonright u \mid S \in \operatorname{lnv} \mathbf{A}\}\rangle$, where $S \upharpoonright u:=S \cap U^{m}$
- corresponds to $\mathbf{A} \mid u$.

Separating invariant relations

Definition (Separation, Cover)
Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{lnv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,

Separating invariant relations

Definition (Separation, Cover)
Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$, $V \in$ Neigh \mathbf{A}.

Separating invariant relations

Definition (Separation, Cover)
Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{lnv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,
$V \in \operatorname{Neigh} \mathbf{A}$.

- V separates S and T iff $S\left\lceil_{V} \neq T \upharpoonright_{V} . \quad\left(S_{i v}:=S \cap V^{m}\right)\right.$

Separating invariant relations

Definition (Separation, Cover)
Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,
$V \in \operatorname{Neigh} \mathbf{A}$.

- V separates S and T iff $S \upharpoonright_{v} \neq T \upharpoonright_{v} . \quad\left(S \upharpoonright_{v}:=S \cap V^{m}\right)$

Separating invariant relations

S

$0 \in V^{m}$
T

Definition (Separation, Cover)
Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,
$V \in \operatorname{Neigh} \mathbf{A}$.

- V separates S and T iff $S \upharpoonright_{V} \neq T \upharpoonright_{v} . \quad\left(S \upharpoonright_{V}:=S \cap V^{m}\right)$

Separating invariant relations

Definition (Separation, Cover)

Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$, $V \in$ Neigh \mathbf{A}.

- V separates S and T iff $S\left\lceil v \neq T \upharpoonright_{v} . \quad\left(S \upharpoonright_{v}:=S \cap V^{m}\right)\right.$

Separating invariant relations

Definition (Separation, Cover)

Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,
$V \in \operatorname{Neigh} \mathbf{A}$ and $\mathcal{U} \subseteq \operatorname{Neigh} \mathbf{A}$.

- V separates S and T iff $S \upharpoonright_{v} \neq T \upharpoonright_{v} . \quad\left(S \upharpoonright_{v}:=S \cap V^{m}\right)$
- \mathcal{U} separates S and T iff $\exists U \in \mathcal{U}: \cup$ separates S and T (i.e. $S \upharpoonright u \neq T \upharpoonright u)$

Separating invariant relations

Definition (Separation, Cover)

Let $m \in \mathbb{N}_{+}, S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}:=\operatorname{Sub} \mathbf{A}^{m}$,
$V \in \operatorname{Neigh} \mathbf{A}$ and $\mathcal{U} \subseteq$ Neigh \mathbf{A}.

- V separates S and T iff $S\left\lceil\vee \neq T \upharpoonright v . \quad\left(S \upharpoonright_{V}:=S \cap V^{m}\right)\right.$
- \mathcal{U} separates S and T iff $\exists U \in \mathcal{U}: \cup$ separates S and T (i.e. $S \upharpoonright u \neq T \upharpoonright u)$
- $\mathcal{U} \in \operatorname{Cov}(\mathbf{A})$ iff \mathcal{U} covers \mathbf{A} iff every nonidentical pair $S^{\prime}, T^{\prime} \in \operatorname{Inv}{ }^{(\ell)} \mathbf{A}, S^{\prime} \neq T^{\prime}, \ell \in \mathbb{N}_{+}$, is separated by \mathcal{U} :

$$
S^{\prime} \neq T^{\prime} \quad \Longrightarrow \quad \exists \cup \in \mathcal{U}: S^{\prime} \upharpoonright u \neq T^{\prime} \upharpoonright u .
$$

Characterisation of covers ASD

Characterisation of covers

Theorem (Kearnes, Á. Szendrei, 2001)
Let \mathbf{A} be a finite algebra and $E \subseteq \operatorname{Idem} \mathbf{A}$. Set $\mathcal{U}:=\{\operatorname{ime} \mid e \in E\}$. T.f.a.e.:
(1) \mathcal{U} covers \mathbf{A}.

Characterisation of covers

Theorem (Kearnes, Á. Szendrei, 2001)
Let \mathbf{A} be a finite algebra and $E \subseteq \operatorname{Idem} \mathbf{A}$. Set $\mathcal{U}:=\{\operatorname{ime} \mid e \in E\}$. T.f.a.e.:
(1) \mathcal{U} covers \mathbf{A}.
(2) $\exists q \in \mathbb{N} \exists e_{1}, \ldots, e_{q} \in E \exists g_{1}, \ldots, g_{q} \in \operatorname{Clo}^{(1)}(\mathbf{A})$
$\exists \lambda \in \operatorname{Clo}^{(q)}(\mathbf{A}): \lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=\mathrm{id}_{A}$.

Characterisation of covers

Theorem (Kearnes, Á. Szendrei, 2001)
Let \mathbf{A} be a finite algebra and $E \subseteq \operatorname{Idem} \mathbf{A}$. Set $\mathcal{U}:=\{\operatorname{ime} \mid e \in E\}$. T.f.a.e.:
(1) \mathcal{U} covers \mathbf{A}.
(2) $\exists q \in \mathbb{N} \exists e_{1}, \ldots, e_{q} \in E \exists g_{1}, \ldots, g_{q} \in \operatorname{Clo}^{(1)}(\mathbf{A})$
$\exists \lambda \in \operatorname{Clo}^{(q)}(\mathbf{A}): \lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=\mathrm{id}_{A}$.
(3) $\exists q \in \mathbb{N} \exists\left(U_{1}, \ldots, U_{q}\right) \in \mathcal{U}^{q}: \quad \mathbf{A}$ is a retract of A ${ }^{U_{1}} \times \cdots \times \mathbf{A} \downharpoonleft U_{a}$

Characterisation of covers

Theorem (Kearnes, Á. Szendrei, 2001)
Let \mathbf{A} be a finite algebra and $E \subseteq \operatorname{Idem} \mathbf{A}$. Set $\mathcal{U}:=\{\operatorname{ime} \mid e \in E\}$. T.f.a.e.:
(1) \mathcal{U} covers \mathbf{A}.
(2) $\exists q \in \mathbb{N} \exists e_{1}, \ldots, e_{q} \in E \exists g_{1}, \ldots, g_{q} \in \mathrm{Clo}^{(1)}(\mathbf{A})$
$\exists \lambda \in \operatorname{Clo}^{(q)}(\mathbf{A}): \lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=i d_{A}$.
(3) $\exists q \in \mathbb{N} \exists\left(U_{1}, \ldots, U_{q}\right) \in \mathcal{U}^{q}: \quad \mathbf{A}$ is a retract of $\mathbf{A} \sqrt{U_{1}} \times \cdots \times \mathbf{A} \downharpoonleft U_{q}$, i.e. there are relational morphisms such that

Benefit of covers

(1) decomposition equation = way to globalisation $\lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)={i d_{A}}$

Benefit of covers

(1) decomposition equation $=$ way to globalisation

$$
\lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=\operatorname{id}_{A}
$$

(2) $\mathbf{A} \leftarrow \prod_{i=1}^{q} \mathbf{A}{ }_{u_{i}}$

Benefit of covers

(1) decomposition equation $=$ way to globalisation $\lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=\operatorname{id}_{A}$
(2) $\left.\left.\mathbf{A} \leftarrow \prod_{i=1}^{q} \mathbf{A}\right|_{U_{i}} \leftrightarrow \boxtimes_{i=1}^{q} \mathbf{A}\right|_{U_{i}}$

Benefit of covers

(1) decomposition equation = way to globalisation

$$
\lambda \circ\left(e_{1} \circ g_{1}, \ldots, e_{q} \circ g_{q}\right)=\operatorname{id}_{A}
$$

(2) $\mathbf{A} \leftarrow \prod_{i=1}^{q} \mathbf{A}\left|u_{i} \leftrightarrow \boxtimes_{i=1}^{q} \mathbf{A}\right| U_{i}$
(3) $\operatorname{Var} \mathbf{A} \equiv \operatorname{Var}\left(\left.\boxtimes_{i=1}^{q} \mathbf{A}\right|_{u_{i}}\right)$

When localisation is useless ...

Definition (Irreducibility)
A irreducible, iff every cover $\mathcal{U} \subseteq$ Neigh \mathbf{A} contains $A \in \mathcal{U}$.

When localisation is useless ...

Definition (Irreducibility)
A irreducible, iff every cover $\mathcal{U} \subseteq \operatorname{Neigh} \mathbf{A}$ contains $A \in \mathcal{U}$.

Definition (Irreducible neighbourhood)
$U \in$ Neigh \mathbf{A} irreducible $:\left.\Longleftrightarrow \mathbf{A}\right|_{\cup}$ irreducible. $\operatorname{lr}(\mathbf{A}):=\{U \in \operatorname{Neigh} \mathbf{A} \mid U$ is irreducible $\}$.

Better localisations-refinement of covers

For $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(\mathbf{A}):$
$\mathcal{V} \leq_{\text {ref }} \mathcal{U}$ quasiorder
$: \Longleftrightarrow \forall V \in \mathcal{V} \exists U \in \mathcal{U}: V \subseteq U$

Better localisations-refinement of covers

For $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(\mathbf{A})$:
$\mathcal{V} \leq_{\text {ref }} \mathcal{U}$ quasiorder
$: \Longleftrightarrow \forall V \in \mathcal{V} \exists U \in \mathcal{U}: V \subseteq U$

Better localisations-refinement of covers

For $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(\mathbf{A})$:
$\mathcal{V} \leq_{\text {ref }} \mathcal{U}$ quasiorder
$: \Longleftrightarrow \forall V \in \mathcal{V} \exists U \in \mathcal{U}: V \subseteq U$

refinement-minimal

Better localisations-refinement of covers

For $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(\mathbf{A})$:
$\mathcal{V} \leq_{\text {ref }} \mathcal{U}$ quasiorder
$: \Longleftrightarrow \forall V \in \mathcal{V} \exists U \in \mathcal{U}: V \subseteq U$

Better localisations-refinement of covers

> For $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(\mathbf{A}):$
> $\mathcal{V} \leq_{\text {ref }} \mathcal{U}$ quasiorder
> $: \Longleftrightarrow \forall V \in \mathcal{V} \exists U \in \mathcal{U}: V \subseteq U$

refinement-minimal \wedge irredundant $\Longleftrightarrow: \mathcal{U} \in \operatorname{Cov}(\mathbf{A})$ nonrefinable

Existence and uniqueness of covers

Theorem (Kearnes, Á. Szendrei, 2001, MB, 2009)
Every finite algebra A has got exactly one nonrefinable cover \mathcal{U} up to isomorphism.

Existence and uniqueness of covers

Theorem (Kearnes, Á. Szendrei, 2001, MB, 2009)
Every finite algebra A has got exactly one nonrefinable cover \mathcal{U} up to isomorphism.
Furthermore, all neighbourhoods in \mathcal{U} are irreducible.

Existence and uniqueness of covers

Theorem (Kearnes, Á. Szendrei, 2001, MB, 2009)
Every finite algebra \mathbf{A} has got exactly one nonrefinable cover \mathcal{U} up to isomorphism.
Furthermore, all neighbourhoods in \mathcal{U} are irreducible.
This does not clarify the structure of such a cover precisely.

Existence and uniqueness of covers

Theorem (Kearnes, Á. Szendrei, 2001, MB, 2009)
Every finite algebra \mathbf{A} has got exactly one nonrefinable cover \mathcal{U} up to isomorphism.
Furthermore, all neighbourhoods in \mathcal{U} are irreducible.
This does not clarify the structure of such a cover precisely.
Theorem (MB, FMS, 2011)
The unique nonrefinable cover of a finite algebra \mathbf{A} consists of a system of $\cong-r e p r e s e n t a t i v e s ~ o f ~ t h e ~ m a x i m a l ~ s t r i c t l y ~$ irreducible neighbourhoods of \mathbf{A}.

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A}_{U} \cong \mathbf{A}_{V}$ (indexed by Inv \mathbf{A})

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A} \downharpoonleft \cup \cong \mathbf{A}_{V}$ (indexed by $\operatorname{Inv} \mathbf{A}$)
- $U \precsim V: \Longleftrightarrow \exists W \in$ Neigh $\mathbf{A}: U \cong W \subseteq V$

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A}_{U} \cong \mathbf{A}_{V}$ (indexed by $\left.\ln v \mathbf{A}\right)$
- $U \precsim V: \Longleftrightarrow \exists W \in$ Neigh $\mathbf{A}: U \cong W \subseteq V$

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A}_{\cup} \cong \mathbf{A}_{V}$ (indexed by $\left.\ln v \mathbf{A}\right)$
- $U \precsim V: \Longleftrightarrow \exists W \in$ Neigh $\mathbf{A}: U \cong W \subseteq V$

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A}_{\cup} \cong \mathbf{A}_{V}$ (indexed by $\left.\ln v \mathbf{A}\right)$
- $U \precsim V: \Longleftrightarrow \exists W \in$ Neigh $\mathbf{A}: U \cong W \subseteq V$

Definition

Let $U, V \in$ Neigh \mathbf{A}.

- $U \cong V: \Longleftrightarrow \mathbf{A}{ }_{\cup} \cong \mathbf{A}_{V}$ (indexed by $\operatorname{Inv} \mathbf{A}$)
- $U \precsim V: \Longleftrightarrow \exists W \in$ Neigh $\mathbf{A}: U \cong W \subseteq V$

Lemma

Let $S, T \in \operatorname{Inv}{ }^{(m)} \mathbf{A}, U \in \operatorname{Neigh} \mathbf{A}$.

- (Neigh \mathbf{A}, \precsim) is a quasiordered set.
- A finite $\Longrightarrow \precsim \cap \succsim=\cong$.
- $U \precsim V \Leftrightarrow \exists f, g \in \operatorname{Clo}^{(1)}(\mathbf{A})(\quad f[A] \subseteq V, g[A] \subseteq U$ and

$$
\forall u \in U(g(f(u))=u))
$$

Outline

(1) Theoretical background from Relational Structure Theory

(2) Polynomial expansions of distributive lattices

Polynomial expansions?

$$
\mathbf{A}=\langle A ; F\rangle \quad \mathbf{A}_{A}:=\left\langle A ; F \cup\left\{c_{a}^{(0)} \mid a \in A\right\}\right\rangle
$$

Polynomial expansions?

$$
\mathbf{A}=\langle A ; F\rangle \quad \mathbf{A}_{A}:=\left\langle A ; F \cup\left\{c_{a}^{(0)} \mid a \in A\right\}\right\rangle
$$

A finite \Longrightarrow polynomial operations instead of term op's.

Neighbourhoods of distributive lattices

Definition

$\mathbf{D}=\langle D ; \wedge, \mathrm{V}\rangle$ (distributive) lattice, $a, b \in D$. Set $e_{a, b}(x):=a \vee(b \wedge x)$ for $x \in D$.

Lemma

For bounded distributive lattices \mathbf{D}
(1) $\mathrm{Clo}^{(1)}\left(\mathbf{D}_{D}\right)=\operatorname{Idem} \mathbf{D}_{D}=\left\{e_{a, b} \mid a, b \in D\right\}$

$$
=\left\{e_{a, b} \mid a \leq b\right\} \subseteq \operatorname{Hom}(\mathbf{D}, \mathbf{D})
$$

(2) $\operatorname{im} e_{a, b}=[a, a \vee b]$
(3) Neigh $\mathbf{D}_{D}=\{[a, b] \mid a, b \in D, a \leq b\}$

Irreducibility of distributive lattices

Lemma (irreducibility criterion)
A finite algebra \mathbf{A} is irreducible iff $\mathrm{Clo}^{(1)}(\mathbf{A}) \backslash \operatorname{Sym} A \in \operatorname{Sub}\left(\mathbf{A}^{A}\right)$.

Irreducibility of distributive lattices

Lemma (irreducibility criterion)

A finite algebra \mathbf{A} is irreducible iff
$\mathrm{Clo}^{(1)}(\mathbf{A}) \backslash \operatorname{Sym} A \in \operatorname{Sub}\left(\mathbf{A}^{A}\right)$.

Lemma

For bounded distributive lattices \mathbf{D}
(1) $\mathrm{Clo}^{(1)}\left(\mathbf{D}_{D}\right) \backslash$ Sym $D=\left\{e_{a, b} \mid(a, b) \in D^{2} \backslash\{(0,1)\}\right\}$
(2) \mathbf{D} finite: \mathbf{D}_{D} irreducible $\Longleftrightarrow 0 \wedge$-irreducible and 1 V-irreducible

Strictly irreducible neighbourhoods

Proposition

For a finite distributive lattice D, we have

$$
\operatorname{lrr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{lrr}\left(\mathbf{D}_{D}\right)=\{[a, b] \mid a<b, a \bigvee \text {-irr., b } \bigwedge \text {-irr. in }[a, b]\}
$$

Strictly irreducible neighbourhoods

Proposition

For a finite distributive lattice \mathbf{D}, we have

$$
\operatorname{lrr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{lrr}\left(\mathbf{D}_{D}\right)=\{[a, b] \mid a<b, a \bigvee \text {-irr., } b \bigwedge \text {-irr. in }[a, b]\}
$$

```
Proof.
Let }a<b,U:=\operatorname{im}\mp@subsup{e}{a,b}{}=[a,b].\mathrm{ Then }\mp@subsup{e}{a,b}{}\in\operatorname{Hom}(\mathbf{D},\mathbf{D})
```


Strictly irreducible neighbourhoods

Proposition

For a finite distributive lattice D, we have

$$
\operatorname{lrr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{Irr}\left(\mathbf{D}_{D}\right)=\{[a, b] \mid a<b, a \bigvee \text {-irr., b } \bigwedge \text {-irr. in }[a, b]\}
$$

Proof.

Let $a<b, U:=\operatorname{im} e_{a, b}=[a, b]$. Then $e_{a, b} \in \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow \mathbf{D}_{D}\left|u=\mathbf{U}_{u}\right|_{u}$.

$$
\begin{aligned}
U \text { irr. in } \mathbf{D}_{D} \Longleftrightarrow \mathbf{D}_{D}\left|u=\mathbf{U}_{U}\right| \cup \text { irr. } & \Longleftrightarrow \mathbf{U}_{U} \text { irr. polyn. exp. of } \mathbf{U}=[a, b]_{\mathbf{D}} \\
& \Longleftrightarrow a \bigvee \text {-irr., } b \bigwedge \text {-irr. in }[a, b]_{\mathbf{D}} .
\end{aligned}
$$

Strictly irreducible neighbourhoods

Proposition

For a finite distributive lattice D, we have

$$
\operatorname{lrr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{lrr}\left(\mathbf{D}_{D}\right)=\{[a, b] \mid a<b, a \bigvee \text {-irr., b } \bigwedge \text {-irr. in }[a, b]\}
$$

Proof.

Let $a<b, U:=\operatorname{im} e_{a, b}=[a, b]$. Then $e_{a, b} \in \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow \mathbf{D}_{D}\left|u=\mathbf{U}_{u}\right|_{u}$.

$$
\begin{aligned}
U \text { irr. in } \mathbf{D}_{D} \Longleftrightarrow \mathbf{D}_{D}\left|\cup=\mathbf{U}_{U}\right|_{U} \text { irr. } & \Longleftrightarrow \mathbf{U}_{U} \text { irr. polyn. exp. of } \mathbf{U}=[a, b]_{\mathbf{D}} \\
& \Longleftrightarrow a \bigvee \text {-irr., } b \bigwedge \text {-irr. in }[a, b]_{\mathbf{D}} .
\end{aligned}
$$

$e_{a, b} \in \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow$

$$
\text { Iu: } \operatorname{Inv}{ }^{(m)} \mathbf{D}_{D} \longrightarrow \operatorname{Inv}{ }^{(m)} \mathbf{D}_{D} \mid u \quad \text { complete lattice hom. }
$$

Strictly irreducible neighbourhoods

Proposition

For a finite distributive lattice D, we have

$$
\operatorname{lrr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{Irr}\left(\mathbf{D}_{D}\right)=\{[a, b] \mid a<b, a \bigvee \text {-irr., b } \bigwedge \text {-irr. in }[a, b]\}
$$

Proof.

Let $a<b, U:=\operatorname{im} e_{a, b}=[a, b]$. Then $e_{a, b} \in \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow \mathbf{D}_{D}\left|u=\mathbf{U}_{u}\right|_{u}$.

$$
\begin{aligned}
U \text { irr. in } \mathbf{D}_{D} \Longleftrightarrow \mathbf{D}_{D}\left|\cup=\mathbf{U}_{U}\right|_{U} \text { irr. } & \Longleftrightarrow \mathbf{U}_{U} \text { irr. polyn. exp. of } \mathbf{U}=[a, b]_{\mathbf{D}} \\
& \Longleftrightarrow a \bigvee \text {-irr., } b \bigwedge \text {-irr. in }[a, b]_{\mathbf{D}} .
\end{aligned}
$$

$e_{a, b} \in \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow$
IU: $\operatorname{Inv}{ }^{(m)} \mathbf{D}_{D} \longrightarrow \operatorname{Inv}^{(m)} \mathbf{D}_{D} \mid u \quad$ complete lattice hom.
$\operatorname{Idem} \mathbf{D}_{D} \subseteq \operatorname{Hom}(\mathbf{D}, \mathbf{D}) \Longrightarrow \operatorname{Irr}^{*}\left(\mathbf{D}_{D}\right)=\operatorname{Irr}\left(\mathbf{D}_{D}\right)$

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)
Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)

Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true
(1) $a \leq c, b \leq d$ and f, g are inverse lattice hom's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d], g: \quad[c, d] \\
x & \longmapsto x \vee[a, b] \\
y & \longmapsto y \wedge b
\end{aligned}
$$

(2) $a \geq c, b \geq d$ and f, g are inverse lattice homs's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d] \\
x & \longmapsto x \wedge{ }^{[}: \quad[c, d]
\end{aligned} \begin{aligned}
& \longrightarrow[a, b] \\
y & \longmapsto y \vee a
\end{aligned}
$$

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)

Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true
(1) $a \leq c, b \leq d$ and f, g are inverse lattice hom's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d], g: \quad[c, d] \\
x & \longmapsto x \vee c, b] \\
y & \longmapsto y \wedge b
\end{aligned}
$$

(2) $a \geq c, b \geq d$ and f, g are inverse lattice homs's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d] \\
x & \longmapsto x \wedge d: \quad[c, d]
\end{aligned} \begin{aligned}
& \longrightarrow[a, b] \\
y & \longmapsto y \vee a
\end{aligned}
$$

(3) $a \| c$ and $b \| d$ and

$$
[a, b] \cong\left[a \vee c, b_{\wedge}^{\vee} d\right] \cong[c, d] \text { as above }
$$

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)

Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true
(1) $a \leq c, b \leq d$ and f, g are inverse lattice hom's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d], g: \quad[c, d] \\
x & \longmapsto x \vee c, b] \\
y & \longmapsto y \wedge b
\end{aligned}
$$

(2) $a \geq c, b \geq d$ and f, g are inverse lattice homs's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d] \\
x & \longmapsto x \wedge d: \quad[c, d]
\end{aligned} \begin{aligned}
& \longrightarrow[a, b] \\
y & \longmapsto y \vee a
\end{aligned}
$$

(3) $a \| c$ and $b \| d$ and

$$
[a, b] \cong\left[a \vee c, b_{\wedge}^{\vee} d\right] \cong[c, d] \text { as above }
$$

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)

Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true
(1) $a \leq c, b \leq d$ and f, g are inverse lattice hom's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d], g: \quad[c, d] \\
x & \longmapsto x \vee c, b] \\
y & \longmapsto y \wedge b
\end{aligned}
$$

(2) $a \geq c, b \geq d$ and f, g are inverse lattice homs's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d] \\
x & \longmapsto x \wedge d: \quad[c, d]
\end{aligned} \begin{aligned}
& \longrightarrow[a, b] \\
y & \longmapsto y \vee a
\end{aligned}
$$

(3) $a \| c$ and $b \| d$ and

$$
[a, b] \cong\left[a \vee c, b_{\wedge}^{\vee} d\right] \cong[c, d] \text { as above }
$$

Isomorphic neighbourhoods

Lemma (Characterisation of isomorphic neighbourhoods)

Let \mathbf{D} be a bounded distributive lattice, $a \leq b, c \leq d$. Then $[a, b] \cong[c, d]$ iff one of the following cases is true
(1) $a \leq c, b \leq d$ and f, g are inverse lattice hom's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d], g: \quad[c, d] \\
x & \longmapsto x \vee c, b] \\
y & \longmapsto y \wedge b
\end{aligned}
$$

(2) $a \geq c, b \geq d$ and f, g are inverse lattice homs's

$$
\begin{aligned}
f: \quad[a, b] & \longrightarrow[c, d] \\
x & \longmapsto x \wedge d: \quad[c, d]
\end{aligned} \begin{aligned}
& \longrightarrow[a, b] \\
y & \longmapsto y \vee a
\end{aligned}
$$

(3) $a \| c$ and $b \| d$ and

$$
[a, b] \cong\left[a \vee c, b_{\wedge}^{\vee} d\right] \cong[c, d] \text { as above }
$$

Toy example

