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(Part 2)
Introduction



Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

I V . . . a set of variables

I A . . . a domain
I list of constraints of the form R(x1, . . . , xk), where

I x1, . . . , xk ∈ V
I R is a k-ary relation on A (i.e. R ⊆ Ak) constraint relation

An assignment f : V → A satisfies R(x1, . . . , xk), if
(f (x1), . . . , f (xk)) ∈ R

f : V → A is a solution if it satisfies all the constraints
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Some questions we can ask

I Decision CSP: Does a solution exist?

I Max-CSP: Find a map satisfying maximum number of
constraints

I Approx. Max-CSP: Find a map satisfying at least
0.7× Optimum constraints

Definition

An algorithm (α, β)-approximates CSP (0 ≤ α ≤ β ≤ 1) if it
returns an assignment satisfying α-fraction of the constraints
given a β-satisfiable instance.

Example

(0.7β, β)-approximating algorithm returns a map satisfying at least
0.7× Optimum constraints.
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Constraint language

Mentioned problems are computationally hard

One possible restriction (widely studied) — fix a set of possible
constraint relations:

Definition

A constraint language Γ is a finite set of relations on a finite set A.

An instance of CSP(Γ) is a CSP instance such that every
constraint relation is from Γ.



Example: 2-coloring

A = {0, 1}, Γ = {R}, R = {(0, 1), (1, 0)} (inequality)

Instance: R(x1, x2),R(x1, x3),R(x2, x4), . . .
(can be drawn as a graph)

Solution = 2-coloring (bipartition)

I Decision CSP(Γ): Is a given graph bipartite? (easy)

I Max-CSP(Γ): also called Max-Cut (hard)
I Approx. Max-CSP(Γ)

I (0.5β, β)-approx easy
I (0.878β, β)-approx easy Goemans and Williamson’95
I (16/17β, β)-approx hard

Trevisan, Sorkin, Sudan, Williamson’00, Hastad’01
I ((0.878 + ε)β, β) - approx UGC-hard

Khot, Kindler, Mossel, O’Donnel’07



Example: 3-SAT

A = {0, 1}, Γ = {R000,R001,R011,R111}, Rijk = {0, 1}3 {(i , j , k)}

Instance: R000(x1, x2, x3),R001(x1, x3, x5),R011(x3, x2, x6)

or: (x1 ∨ x2 ∨ x3) & (x1 ∨ ¬x3 ∨ ¬x5) & (x3 ∨ ¬x2 ∨ ¬x6)

I Decision CSP(Γ): 3-SAT (hard)

I Max-CSP(Γ): Max-3-SAT (hard)
I Approx. Max-CSP(Γ):

I (7/8β, β)-approx easy Karloff, Zwick’96
I (δ, 1)-approx hard for some δ < 1

(=PCP theorem, Arora, Lund, Motwani, Sudan, Szegedy’98)
I (7/8 + ε, 1)-approx hard Hastad’01



Example: 3-Lin-2

A = {0, 1}, Γ ={affine subspaces of Z 3
2 }

Instance: system of linear equation over Z2

(each equation contains at most 3 variables)

I Decision CSP(Γ): easy (Gaussian elimination)

I Max-CSP(Γ): hard
I Approx. Max-CSP(Γ):

I (1/2β, β)-approx easy
I (1/2 + ε, 1− ε)-approx hard Hastad’01



(Part 3)
Problem



Between decision and approximation

Definition (Zwick’98)

CSP(Γ) admits a robust algorithm, if there is a polynomial time
algorithm which
(1− g(ε), 1− ε)-approximates CSP(Γ) (for every ε),
where g(ε)→ 0 when ε→ 0, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by noise),
we want to find an “almost solution”.

I 2-SAT, HORN-SAT have robust algorithms Zwick’98

I If the decision problem for CSP(Γ) is NP-complete, then
CSP(Γ) has no robust algorithm (PCP,
for |A| = 2 Khanna,Sudan,Trevisan, Williamson’00
for larger Jonsson, Krokhin, Kuivinen’09)

I LIN-p has no robust algorithm Hastad’01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-
SAT?
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Decision CSPs and bounded width

I Pol Γ = clone of polymorphisms (operations compatible with
all relations in Γ)

I Complexity of the decision problem for CSP(Γ) controlled by
HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

I CSP(Γ) has bounded width iff it can be solved by local
consistency checking

I CSP(Γ) has bounded width iff Γ “cannot encode linear
equations”, more precisely, HSP(Pol Γ) does not contain a
reduct of a module (for core Γ) Barto, Kozik’09 Bulatov’09

I Lin-p, 3-SAT do not have bounded width,
2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

CSP(Γ) admits a robust algorithm iff CSP(Γ) has bounded width.
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Universal algebra attacks robust approximation

I robust approximation also (+-) controlled by polymorphisms
Dalmau, Krokhin’11

I ⇒ one direction of the Guruswami-Zhou conjecture is true

I Conjecture confirmed for width 1 CSPs
Kun, O’Donell, Tamaki, Yoshida, Zhou’11,
Dalmau, Krokhin’11.
width 1 iff linear programming relaxation can be used.

I Conjecture confirmed Barto, Kozik’11. Using a semidefinite
programming relaxation and Prague strategies.

I Randomized (1− O(log log(1/ε)/ log(1/ε)), 1− ε)-approx
algorithm

I Deterministic (1− O(log log(1/ε)/
√

log(1/ε)), 1− ε)-approx
algorithm

I Bonus Krokhin’11: even the quantitative dependence on ε is
+- controlled by polymorphisms.
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This was (Part 4)
Problem solved



Now (Part 5)
Proof of a different result



MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2



MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2



MAX-CUT Goemans and Williamson’95

A = {−1, 1}, Γ = {R}, R = {(−1, 1), (1,−1)} (inequality)

Instance I: V = {x1, x2, . . . , }, C = R(x2, x1),R(x1, x4), . . .

Max-CSP – hard:
Find numbers f (x), x ∈ V , f (x) ∈ {−1, 1} which maximize

Opt(I) =
1

|C|
∑

R(x ,y)∈C

1− f (x)f (y)

2

SDP (semidefinite programming) relaxation – easy:
Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2



MAX-CUT cont’d

Find vectors g(x), x ∈ V , ||g(x)||2 = 1 which maximize

SDPOpt(I) =
1

|C|
∑

R(x ,y)∈C

1− g(x)g(y)

2

I SDPOpt(I) ≥ Opt(I), if SDPOpt(I) = 1 then Opt(I) = 1.
I We need to round the vector solution g to a reasonably good

assignment f

I Choose a random hyperplane through the origin and choose
one side S

I Put f (v) = 1 if g(v) ∈ S and f (v) = −1 otherwise

I This is (0.878β, β)-approx and robust algorithm
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(Part 6)
Proof of one more different result



SDP relaxation for general CSP

Notation and simplifying assumptions:

I A – domain

I Γ contains only binary relations, CSP(Γ) has bounded width

I V – variables, I - instance, C – constraints

I ∀ {x , y} ⊆ V , x 6= y there is at most one constraint
Rxy (x , y) ∈ C

I Opt(I) – optimal fraction of satisfied constraints

I ... and we want to find an assignment satisfying a big fraction
of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal
approximation constants (assuming UGC) Raghavendra’08

Let’s try to use it for our problem.
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Canonical SDP relaxation

Find vectors g(x , a) =: xa, x ∈ V , a ∈ A (notation: xB =
∑

a∈B xa)

such that for all x , y ∈ V , a, b ∈ A

I (SDP1) xayb ≥ 0

I (SDP2) xaxb = 0 if a 6= b

I (SDP3) xA = yA, ||xA||2 = 1

maximizing

SDPOpt(I) =
1

|C|
∑

Rxy (x ,y)∈C

∑
(a,b)∈Rxy

xayb.

Intuition:

I xayb is a weight (nonnegative) of the pair (a, b) between
variables x , y

I Sum of all weights (between x , y) is 1 from (SDP3)
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Strategy

I We try to produce a good assignment from the SDP output
vectors.

I In particular, is it true that if SDPOpt(I) = 1 then I has a
solution? This was suggested by Guruswami as the first step
to attack the conjecture

I So, assume SDPOpt(I) = 1.

I It follows that xayb = 0 for every (a, b) 6∈ Rxy

I Define Pxy = {(a, b) ∈ A2 : xayb > 0}. Replace Rxy with Pxy .
If the new instance has a solution then the old one has a
solution.

I Define Px = {a ∈ A : xa 6= o}. And let’s see what we get
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Random facts about Px , Pxy

Pxy = {(a, b) ∈ A2 : xayb > 0}, Px = {a ∈ A : xa 6= o}

I Pxy is a subdirect subset of Px × Py (1-minimality)

For B ⊆ Px let B + (x , y) = {c ∈ A : (∃b ∈ B) (b, c) ∈ Pxy}

I For B ⊆ Px , we have yB+(x ,y) = xB + w,
where wxB = 0, and w = o iff B = B + (x , y)− (x , y).

A (correct) sequence of variables is called a pattern
B + p,B − p defined in a natural way for a pattern p

For any B ⊆ Px and patterns p, q from x to x we have

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B
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Random facts about Px , Pxy - summary

Definition

The new instance with constraints Pxy (x , y) and subsets
Px ⊆ A, x ∈ V satisfies
(for every x , y ∈ V , B ⊆ Px and patterns p, q from x to x)

I It is 1-minimal (Pxy is a subdirect subset of Px × Py )

I If B + p = B then B − p = B

I If B + p + q = B then B + p = B

I Slightly weaker notion than Prague strategy

I Every Prague strategy has a solution (if Pxy ’s are invariant
under Pol Γ...) BK

I Every weak Prague strategy has a solution K
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General case

I SDPOpt(Γ) = 1− ε, ε small

I We define Pxy = {(a, b) : xaxb > δ}

I If δ is big enough then for almost all x , y we have Pxy ⊆ Rxy

I If δ is small enough then the calculations will almost work...

I .......................................................................

I .......................................................................

I ....W..........W......OOO......RRR.........K......K.......

I ....W..........W....O......O.....R.....R......K...K.......

I ....W...W...W....O......O......RRR........KK..............

I ....W...W...W....O......O.....R.....R......K...K..........

I .......W...W.........OOO.......R.......R....K......K......

I .......................................................................

I QED
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Final remarks

I Is the quantitative dependence optimal?

I How to improve derandomization to match the randomized
version?

I What can we say about the quantitative dependence on ε in
general?

Wild guess: NU ⇒ polynomial loss

I SDP, LP outputs ↔ consistency notions (within CSP).
What is the precise connection?
Is there any connection beyond CSPs?

I Thank you!
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