Robust algorithms for CSPs

Libor Barto
joint work with Marcin Kozik

McMaster University
and
Charles University in Prague

AAA 83 Novi Sad, March 15, 2012

(Part 1) Outline

- (Part 2) Introduction
- (Part 3) Problem
- (Part 4) Problem solved
- (Part 5) Proof of a different result
- (Part 6) Proof of one more different result

$$
\begin{aligned}
& \text { (Part 2) } \\
& \text { Introduction }
\end{aligned}
$$

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

- Va set of variables
- A....a domain
- list of constraints of the form $R\left(x_{1}, \ldots, x_{k}\right)$, where
- $x_{1}, \ldots, x_{k} \in V$
- R is a k-ary relation on A (i.e. $R \subseteq A^{k}$) constraint relation

Constraint Satisfaction Problem (CSP)

Definition (Instance of the CSP)

Instance of the CSP consists of:

- V ...a set of variables
- A....a domain
- list of constraints of the form $R\left(x_{1}, \ldots, x_{k}\right)$, where
- $x_{1}, \ldots, x_{k} \in V$
- R is a k-ary relation on A (i.e. $R \subseteq A^{k}$) constraint relation

An assignment $f: V \rightarrow A$ satisfies $R\left(x_{1}, \ldots, x_{k}\right)$, if $\left(f\left(x_{1}\right), \ldots, f\left(x_{k}\right)\right) \in R$
$f: V \rightarrow A$ is a solution if it satisfies all the constraints

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least $0.7 \times$ Optimum constraints

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least $0.7 \times$ Optimum constraints

Definition

An algorithm (α, β)-approximates $\operatorname{CSP}(0 \leq \alpha \leq \beta \leq 1)$ if it returns an assignment satisfying α-fraction of the constraints given a β-satisfiable instance.

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least $0.7 \times$ Optimum constraints

Definition

An algorithm (α, β)-approximates $\operatorname{CSP}(0 \leq \alpha \leq \beta \leq 1)$ if it returns an assignment satisfying α-fraction of the constraints given a β-satisfiable instance.

Example
($0.7 \beta, \beta$)-approximating algorithm returns a map satisfying at least
$0.7 \times$ Optimum constraints.

Constraint language

Mentioned problems are computationally hard
One possible restriction (widely studied) - fix a set of possible constraint relations:

Definition

A constraint language Γ is a finite set of relations on a finite set A.
An instance of $\operatorname{CSP}(\Gamma)$ is a CSP instance such that every constraint relation is from Γ.

Example: 2-coloring

$A=\{0,1\}, \Gamma=\{R\}, R=\{(0,1),(1,0)\}$ (inequality)
Instance: $R\left(x_{1}, x_{2}\right), R\left(x_{1}, x_{3}\right), R\left(x_{2}, x_{4}\right), \ldots$
(can be drawn as a graph)
Solution $=2$-coloring (bipartition)

- Decision $\operatorname{CSP}(\Gamma)$: Is a given graph bipartite? (easy)
- Max- $\operatorname{CSP}(\Gamma)$: also called Max-Cut (hard)
- Approx. Max-CSP(Г)
- $(0.5 \beta, \beta)$-approx easy
- $(0.878 \beta, \beta)$-approx easy Goemans and Williamson'95
- $(16 / 17 \beta, \beta)$-approx hard

Trevisan, Sorkin, Sudan, Williamson'00, Hastad'01

- ($(0.878+\varepsilon) \beta, \beta)$ - approx UGC-hard Khot, Kindler, Mossel, O'Donnel'07

Example: 3-SAT

$A=\{0,1\}, \Gamma=\left\{R_{000}, R_{001}, R_{011}, R_{111}\right\}, \quad R_{i j k}=\{0,1\}^{3}\{(i, j, k)\}$ Instance: $R_{000}\left(x_{1}, x_{2}, x_{3}\right), R_{001}\left(x_{1}, x_{3}, x_{5}\right), R_{011}\left(x_{3}, x_{2}, x_{6}\right)$
or: $\left(x_{1} \vee x_{2} \vee x_{3}\right) \&\left(x_{1} \vee \neg x_{3} \vee \neg x_{5}\right) \&\left(x_{3} \vee \neg x_{2} \vee \neg x_{6}\right)$

- Decision $\operatorname{CSP}(\Gamma)$: 3-SAT (hard)
- Max-CSP(Г): Max-3-SAT (hard)
- Approx. Max-CSP(Г):
- $(7 / 8 \beta, \beta)$-approx easy Karloff, Zwick'96
- $(\delta, 1)$-approx hard for some $\delta<1$ (=PCP theorem, Arora, Lund, Motwani, Sudan, Szegedy'98)
- $(7 / 8+\varepsilon, 1)$-approx hard Hastad'01

Example: 3-Lin-2

$A=\{0,1\}, \Gamma=\left\{\right.$ affine subspaces of $\left.Z_{2}^{3}\right\}$
Instance: system of linear equation over Z_{2}
(each equation contains at most 3 variables)

- Decision $\operatorname{CSP}(\Gamma)$: easy (Gaussian elimination)
- Max-CSP(Г): hard
- Approx. Max-CSP(Г):
- $(1 / 2 \beta, \beta)$-approx easy
- $(1 / 2+\varepsilon, 1-\varepsilon)$-approx hard Hastad'01

$$
\begin{aligned}
& \text { (Part 3) } \\
& \text { Problem }
\end{aligned}
$$

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

Motivation: Instances close to satisfiable (e.g. corrupted by noise), we want to find an "almost solution".

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- $\left(1-O\left(\varepsilon^{1 / 3}\right), 1-\varepsilon\right)$-approx algorithm for 2-SAT
- $(1-O(1 /(\log (1 / \varepsilon))), 1-\varepsilon)$-approx algorithm for HORN-SAT

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for $\operatorname{CSP}(\Gamma)$ is NP-complete, then $\operatorname{CSP}(\Gamma)$ has no robust algorithm (PCP, for $|A|=2$ Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for $\operatorname{CSP}(\Gamma)$ is NP-complete, then $\operatorname{CSP}(\Gamma)$ has no robust algorithm (PCP, for $|A|=2$ Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)
- LIN-p has no robust algorithm Hastad'01

Between decision and approximation

Definition (Zwick'98)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which
$(1-g(\varepsilon), 1-\varepsilon)$-approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \rightarrow 0$ when $\varepsilon \rightarrow 0$, and $g(0)=0$.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for $\operatorname{CSP}(\Gamma)$ is NP-complete, then $\operatorname{CSP}(\Gamma)$ has no robust algorithm (PCP, for $|A|=2$ Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)
- LIN-p has no robust algorithm Hastad'01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORNSAT?

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00
- $\operatorname{CSP}(\Gamma)$ has bounded width iff it can be solved by local consistency checking

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in 「)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00
- $\operatorname{CSP}(\Gamma)$ has bounded width iff it can be solved by local consistency checking
- $\operatorname{CSP}(\Gamma)$ has bounded width iff Γ "cannot encode linear equations", more precisely, $\operatorname{HSP}($ Pol Γ) does not contain a reduct of a module (for core 「) Barto, Kozik'09 Bulatov'09

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in 「)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00
- $\operatorname{CSP}(\Gamma)$ has bounded width iff it can be solved by local consistency checking
- $\operatorname{CSP}(\Gamma)$ has bounded width iff Γ "cannot encode linear equations", more precisely, $\operatorname{HSP}($ Pol Γ) does not contain a reduct of a module (for core r) Barto, Kozik'09 Bulatov'09
- Lin-p, 3-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00
- $\operatorname{CSP}(\Gamma)$ has bounded width iff it can be solved by local consistency checking
- $\operatorname{CSP}(\Gamma)$ has bounded width iff Γ "cannot encode linear equations", more precisely, $\operatorname{HSP}($ Pol Γ) does not contain a reduct of a module (for core 「) Barto, Kozik'09 Bulatov'09
- Lin- $p, 3$-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width !!!

Decision CSPs and bounded width

- Pol $\Gamma=$ clone of polymorphisms (operations compatible with all relations in 「)
- Complexity of the decision problem for $\operatorname{CSP}(\Gamma)$ controlled by HSP(Pol Г) Bulatov, Jeavons, Krokhin 00
- $\operatorname{CSP}(\Gamma)$ has bounded width iff it can be solved by local consistency checking
- $\operatorname{CSP}(\Gamma)$ has bounded width iff Γ "cannot encode linear equations", more precisely, $\operatorname{HSP}(\operatorname{Pol} \Gamma)$ does not contain a reduct of a module (for core r) Barto, Kozik'09 Bulatov'09
- Lin- $p, 3$-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

$\operatorname{CSP}(\Gamma)$ admits a robust algorithm iff $\operatorname{CSP}(\Gamma)$ has bounded width.

Universal algebra attacks robust approximation

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \Rightarrow one direction of the Guruswami-Zhou conjecture is true

Universal algebra attacks robust approximation

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11. width 1 iff linear programming relaxation can be used.

Universal algebra attacks robust approximation

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11. width 1 iff linear programming relaxation can be used.
- Conjecture confirmed Barto, Kozik'11.

Universal algebra attacks robust approximation

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11. width 1 iff linear programming relaxation can be used.
- Conjecture confirmed Barto, Kozik'11. Using a semidefinite programming relaxation and Prague strategies.
- Randomized $(1-O(\log \log (1 / \varepsilon) / \log (1 / \varepsilon)), 1-\varepsilon)$-approx algorithm
- Deterministic $(1-O(\log \log (1 / \varepsilon) / \sqrt{\log (1 / \varepsilon)}), 1-\varepsilon)$-approx algorithm

Universal algebra attacks robust approximation

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11. width 1 iff linear programming relaxation can be used.
- Conjecture confirmed Barto, Kozik'11. Using a semidefinite programming relaxation and Prague strategies.
- Randomized $(1-O(\log \log (1 / \varepsilon) / \log (1 / \varepsilon)), 1-\varepsilon)$-approx algorithm
- Deterministic $(1-O(\log \log (1 / \varepsilon) / \sqrt{\log (1 / \varepsilon)}), 1-\varepsilon)$-approx algorithm
- Bonus Krokhin'11: even the quantitative dependence on ε is + - controlled by polymorphisms.

This was (Part 4) Problem solved

Now (Part 5)
 Proof of a different result

MAX-CUT Goemans and Williamson'95

$$
A=\{-1,1\}, \Gamma=\{R\}, R=\{(-1,1),(1,-1)\} \text { (inequality) }
$$

$$
\text { Instance } \mathcal{I}: V=\left\{x_{1}, x_{2}, \ldots,\right\}, \mathcal{C}=R\left(x_{2}, x_{1}\right), R\left(x_{1}, x_{4}\right), \ldots
$$

MAX-CUT Goemans and Williamson'95

$A=\{-1,1\}, \Gamma=\{R\}, R=\{(-1,1),(1,-1)\}$ (inequality)
Instance $\mathcal{I}: V=\left\{x_{1}, x_{2}, \ldots,\right\}, \mathcal{C}=R\left(x_{2}, x_{1}\right), R\left(x_{1}, x_{4}\right), \ldots$
Max-CSP - hard:
Find numbers $f(x), x \in V, f(x) \in\{-1,1\}$ which maximize

$$
\operatorname{Opt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-f(x) f(y)}{2}
$$

MAX-CUT Goemans and Williamson'95

$A=\{-1,1\}, \Gamma=\{R\}, R=\{(-1,1),(1,-1)\}$ (inequality)
Instance $\mathcal{I}: V=\left\{x_{1}, x_{2}, \ldots,\right\}, \mathcal{C}=R\left(x_{2}, x_{1}\right), R\left(x_{1}, x_{4}\right), \ldots$
Max-CSP - hard:
Find numbers $f(x), x \in V, f(x) \in\{-1,1\}$ which maximize

$$
\operatorname{Opt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-f(x) f(y)}{2}
$$

SDP (semidefinite programming) relaxation - easy:
Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

MAX-CUT cont'd

Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

MAX-CUT cont'd

Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

- $\operatorname{SDPOpt}(\mathcal{I}) \geq \operatorname{Opt}(\mathcal{I})$, if $\operatorname{SDPOpt}(\mathcal{I})=1$ then $\operatorname{Opt}(\mathcal{I})=1$.

MAX-CUT cont'd

Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

- $\operatorname{SDPOpt}(\mathcal{I}) \geq \operatorname{Opt}(\mathcal{I})$, if $\operatorname{SDPOpt}(\mathcal{I})=1$ then $\operatorname{Opt}(\mathcal{I})=1$.
- We need to round the vector solution g to a reasonably good assignment f

MAX-CUT cont'd

Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

- $\operatorname{SDPOpt}(\mathcal{I}) \geq \operatorname{Opt}(\mathcal{I})$, if $\operatorname{SDPOpt}(\mathcal{I})=1$ then $\operatorname{Opt}(\mathcal{I})=1$.
- We need to round the vector solution g to a reasonably good assignment f
- Choose a random hyperplane through the origin and choose one side S
- Put $f(v)=1$ if $g(v) \in S$ and $f(v)=-1$ otherwise

MAX-CUT cont'd

Find vectors $g(x), x \in V,\|g(x)\|^{2}=1$ which maximize

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R(x, y) \in \mathcal{C}} \frac{1-g(x) g(y)}{2}
$$

- $\operatorname{SDPOpt}(\mathcal{I}) \geq \operatorname{Opt}(\mathcal{I})$, if $\operatorname{SDPOpt}(\mathcal{I})=1$ then $\operatorname{Opt}(\mathcal{I})=1$.
- We need to round the vector solution g to a reasonably good assignment f
- Choose a random hyperplane through the origin and choose one side S
- Put $f(v)=1$ if $g(v) \in S$ and $f(v)=-1$ otherwise
- This is $(0.878 \beta, \beta)$-approx and robust algorithm

(Part 6)

Proof of one more different result

SDP relaxation for general CSP

Notation and simplifying assumptions:

- A-domain
- Γ contains only binary relations, $\operatorname{CSP}(\Gamma)$ has bounded width
- V - variables, \mathcal{I} - instance, \mathcal{C} - constraints

SDP relaxation for general CSP

Notation and simplifying assumptions:

- A-domain
- Γ contains only binary relations, $\operatorname{CSP}(\Gamma)$ has bounded width
- V - variables, \mathcal{I} - instance, \mathcal{C} - constraints
- $\forall\{x, y\} \subseteq V, x \neq y$ there is at most one constraint $R_{x y}(x, y) \in \mathcal{C}$
[picture]

SDP relaxation for general CSP

Notation and simplifying assumptions:

- A-domain
- Γ contains only binary relations, $\operatorname{CSP}(\Gamma)$ has bounded width
- V - variables, \mathcal{I} - instance, \mathcal{C} - constraints
- $\forall\{x, y\} \subseteq V, x \neq y$ there is at most one constraint $R_{x y}(x, y) \in \mathcal{C}$
- $\operatorname{Opt}(\mathcal{I})$ - optimal fraction of satisfied constraints
- ... and we want to find an assignment satisfying a big fraction of the constraints)
[picture]

SDP relaxation for general CSP

Notation and simplifying assumptions:

- A-domain
- Γ contains only binary relations, $\operatorname{CSP}(\Gamma)$ has bounded width
- V - variables, \mathcal{I} - instance, \mathcal{C} - constraints
- $\forall\{x, y\} \subseteq V, x \neq y$ there is at most one constraint $R_{x y}(x, y) \in \mathcal{C}$
- $\operatorname{Opt}(\mathcal{I})$ - optimal fraction of satisfied constraints
- ... and we want to find an assignment satisfying a big fraction of the constraints)
[picture]
Canonical SDP relaxation is strong enough to get optimal approximation constants (assuming UGC) Raghavendra'08 Let's try to use it for our problem.

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\left.\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}\right)$

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}$) such that for all $x, y \in V, a, b \in A$

- (SDP1) $\mathbf{x}_{a} \mathbf{y}_{b} \geq 0$
- (SDP2) $x_{a} x_{b}=0$ if $a \neq b$
- (SDP3) $\mathbf{x}_{A}=\mathbf{y}_{A},\left\|\mathbf{x}_{A}\right\|^{2}=1$

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}$) such that for all $x, y \in V, a, b \in A$

- (SDP1) $\mathbf{x}_{a} \mathbf{y}_{b} \geq 0$
- (SDP2) $x_{a} x_{b}=0$ if $a \neq b$
- (SDP3) $\mathbf{x}_{A}=\mathbf{y}_{A},\left\|\mathbf{x}_{A}\right\|^{2}=1$
maximizing

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R_{x y}(x, y) \in \mathcal{C}} \sum_{(a, b) \in R_{x y}} \mathbf{x}_{a} \mathbf{y}_{b}
$$

Intuition:

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}$) such that for all $x, y \in V, a, b \in A$

- (SDP1) $\mathbf{x}_{a} \mathbf{y}_{b} \geq 0$
- (SDP2) $x_{a} x_{b}=0$ if $a \neq b$
- (SDP3) $\mathbf{x}_{A}=\mathbf{y}_{A},\left\|\mathbf{x}_{A}\right\|^{2}=1$
maximizing

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R_{x y}(x, y) \in \mathcal{C}} \sum_{(a, b) \in R_{x y}} \mathbf{x}_{a} \mathbf{y}_{b}
$$

Intuition:

- $\mathbf{x}_{a} \mathbf{y}_{b}$ is a weight (nonnegative) of the pair (a, b) between variables x, y

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}$) such that for all $x, y \in V, a, b \in A$

- (SDP1) $\mathbf{x}_{a} \mathbf{y}_{b} \geq 0$
- (SDP2) $x_{a} x_{b}=0$ if $a \neq b$
- (SDP3) $\mathbf{x}_{A}=\mathbf{y}_{A},\left\|\mathbf{x}_{A}\right\|^{2}=1$
maximizing

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R_{x y}(x, y) \in \mathcal{C}} \sum_{(a, b) \in R_{x y}} \mathbf{x}_{a} \mathbf{y}_{b}
$$

Intuition:

- $\mathbf{x}_{a} \mathbf{y}_{b}$ is a weight (nonnegative) of the pair (a, b) between variables x, y
- Sum of all weights (between x, y) is 1 from (SDP3)

Canonical SDP relaxation

Find vectors $g(x, a)=: \mathbf{x}_{a}, x \in V, a \in A$ (notation: $\mathbf{x}_{B}=\sum_{a \in B} \mathbf{x}_{a}$) such that for all $x, y \in V, a, b \in A$

- (SDP1) $\mathbf{x}_{a} \mathbf{y}_{b} \geq 0$
- (SDP2) $x_{a} x_{b}=0$ if $a \neq b$
- (SDP3) $\mathbf{x}_{A}=\mathbf{y}_{A},\left\|\mathbf{x}_{A}\right\|^{2}=1$
maximizing

$$
\operatorname{SDPOpt}(\mathcal{I})=\frac{1}{|\mathcal{C}|} \sum_{R_{x y}(x, y) \in \mathcal{C}} \sum_{(a, b) \in R_{x y}} \mathbf{x}_{a} \mathbf{y}_{b}
$$

Intuition:

- $\mathbf{x}_{a} \mathbf{y}_{b}$ is a weight (nonnegative) of the pair (a, b) between variables x, y
- Sum of all weights (between x, y) is 1 from (SDP3)
- We are trying to give small weights to pairs outside $R_{x y}$

Strategy

- We try to produce a good assignment from the SDP output vectors.

Strategy

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if $\operatorname{SDPOpt}(\mathcal{I})=1$ then \mathcal{I} has a solution? This was suggested by Guruswami as the first step to attack the conjecture

Strategy

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if $\operatorname{SDPOpt}(\mathcal{I})=1$ then \mathcal{I} has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\operatorname{SDPOpt}(\mathcal{I})=1$.

Strategy

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if $\operatorname{SDPOpt}(\mathcal{I})=1$ then \mathcal{I} has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\operatorname{SDPOpt}(\mathcal{I})=1$.
- It follows that $\mathbf{x}_{a} \mathbf{y}_{b}=0$ for every $(a, b) \notin R_{x y}$

Strategy

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if $\operatorname{SDPOpt}(\mathcal{I})=1$ then \mathcal{I} has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\operatorname{SDPOpt}(\mathcal{I})=1$.
- It follows that $\mathbf{x}_{a} \mathbf{y}_{b}=0$ for every $(a, b) \notin R_{x y}$
- Define $P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}$. Replace $R_{x y}$ with $P_{x y}$. If the new instance has a solution then the old one has a solution.

Strategy

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if $\operatorname{SDPOpt}(\mathcal{I})=1$ then \mathcal{I} has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\operatorname{SDPOpt}(\mathcal{I})=1$.
- It follows that $\mathbf{x}_{a} \mathbf{y}_{b}=0$ for every $(a, b) \notin R_{x y}$
- Define $P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}$. Replace $R_{x y}$ with $P_{x y}$. If the new instance has a solution then the old one has a solution.
- Define $P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{0}\right\}$. And let's see what we get

Random facts about $P_{x}, P_{x y}$

$$
P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}
$$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)
- It is a subset: If $\mathbf{x}_{a} \mathbf{y}_{b}>0$ then $\mathbf{x}_{a}, \mathbf{y}_{b} \neq \mathbf{0}$
- It is subdirect: If $\mathbf{x}_{a} \neq \mathbf{o}$ then $0 \neq\left\|\mathbf{x}_{a}\right\|^{2}=\mathbf{x}_{a} \mathbf{x}_{A}=\mathbf{x}_{a} \mathbf{y}_{A}$, therefore $\mathbf{x}_{a} \mathbf{y}_{b} \neq 0$ for some b

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

For $B \subseteq P_{x}$ let $B+(x, y)=\left\{c \in A:(\exists b \in B)(b, c) \in P_{x y}\right\}$

- For $B \subseteq P_{x}$, we have $\mathbf{y}_{B+(x, y)}=\mathbf{x}_{B}+\mathbf{w}$, where $\mathbf{w x}_{B}=0$, and $\mathbf{w}=\mathbf{o}$ iff $B=B+(x, y)-(x, y)$.

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

For $B \subseteq P_{x}$ let $B+(x, y)=\left\{c \in A:(\exists b \in B)(b, c) \in P_{x y}\right\}$

- For $B \subseteq P_{x}$, we have $\mathbf{y}_{B+(x, y)}=\mathbf{x}_{B}+\mathbf{w}$, where $\mathbf{w} \mathbf{x}_{B}=0$, and $\mathbf{w}=\mathbf{o}$ iff $B=B+(x, y)-(x, y)$.
- $\mathbf{w x}_{B}=\left(\mathbf{y}_{B+(x, y)}-\mathbf{x}_{B}\right) \mathbf{x}_{B}=\mathbf{y}_{B+(x, y)} \mathbf{x}_{B}-\mathbf{x}_{B} \mathbf{x}_{B}=\mathbf{y}_{B+(x, y)} \mathbf{x}_{B}-$ $\mathbf{y}_{A} \mathbf{x}_{B}=-\left(\mathbf{y}_{A}-\mathbf{y}_{B+(x, y)}\right) \mathbf{x}_{B}=-\mathbf{y}_{A-(B+(x, y))} \mathbf{x}_{B}=0$
- $\mathbf{w w}=\cdots=\mathbf{x}_{A-B} \mathbf{y}_{B+(x, y)}$

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

For $B \subseteq P_{x}$ let $B+(x, y)=\left\{c \in A:(\exists b \in B)(b, c) \in P_{x y}\right\}$

- For $B \subseteq P_{x}$, we have $\mathbf{y}_{B+(x, y)}=\mathbf{x}_{B}+\mathbf{w}$, where $\mathbf{w} \mathbf{x}_{B}=0$, and $\mathbf{w}=\mathbf{o}$ iff $B=B+(x, y)-(x, y)$.

A (correct) sequence of variables is called a pattern
$B+p, B-p$ defined in a natural way for a pattern p

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

For $B \subseteq P_{x}$ let $B+(x, y)=\left\{c \in A:(\exists b \in B)(b, c) \in P_{x y}\right\}$

- For $B \subseteq P_{x}$, we have $\mathbf{y}_{B+(x, y)}=\mathbf{x}_{B}+\mathbf{w}$, where $\mathbf{w} \mathbf{x}_{B}=0$, and $\mathbf{w}=\mathbf{o}$ iff $B=B+(x, y)-(x, y)$.

A (correct) sequence of variables is called a pattern $B+p, B-p$ defined in a natural way for a pattern p

For any $B \subseteq P_{x}$ and patterns p, q from x to x we have

- If $B+p=B$ then $B-p=B$

Random facts about $P_{x}, P_{x y}$

$P_{x y}=\left\{(a, b) \in A^{2}: \mathbf{x}_{a} \mathbf{y}_{b}>0\right\}, P_{x}=\left\{a \in A: \mathbf{x}_{a} \neq \mathbf{o}\right\}$

- $P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$ (1-minimality)

For $B \subseteq P_{x}$ let $B+(x, y)=\left\{c \in A:(\exists b \in B)(b, c) \in P_{x y}\right\}$

- For $B \subseteq P_{x}$, we have $\mathbf{y}_{B+(x, y)}=\mathbf{x}_{B}+\mathbf{w}$, where $\mathbf{w} \mathbf{x}_{B}=0$, and $\mathbf{w}=\mathbf{o}$ iff $B=B+(x, y)-(x, y)$.

A (correct) sequence of variables is called a pattern $B+p, B-p$ defined in a natural way for a pattern p

For any $B \subseteq P_{x}$ and patterns p, q from x to x we have

- If $B+p=B$ then $B-p=B$
- If $B+p+q=B$ then $B+p=B$

Random facts about $P_{x}, P_{x y}$ - summary

The new instance with constraints $P_{x y}(x, y)$ and subsets $P_{x} \subseteq A, x \in V$ satisfies
(for every $x, y \in V, B \subseteq P_{x}$ and patterns p, q from x to x)

- It is 1-minimal ($P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$)
- If $B+p=B$ then $B-p=B$
- If $B+p+q=B$ then $B+p=B$

Weak Prague instance

Definition

An instance with constraints $P_{x y}(x, y)$ and subsets $P_{x} \subseteq A, x \in V$ is a weak Prague instance if
(for every $x, y \in V, B \subseteq P_{x}$ and patterns p, q from x to x)

- It is 1-minimal ($P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$)
- If $B+p=B$ then $B-p=B$
- If $B+p+q=B$ then $B+p=B$

Weak Prague instance

Definition

An instance with constraints $P_{x y}(x, y)$ and subsets $P_{x} \subseteq A, x \in V$ is a weak Prague instance if
(for every $x, y \in V, B \subseteq P_{x}$ and patterns p, q from x to x)

- It is 1-minimal ($P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$)
- If $B+p=B$ then $B-p=B$
- If $B+p+q=B$ then $B+p=B$
- Slightly weaker notion than Prague strategy
- Every Prague strategy has a solution (if $P_{x y}$'s are invariant under Pol Г...) BK

Weak Prague instance

Definition

An instance with constraints $P_{x y}(x, y)$ and subsets $P_{x} \subseteq A, x \in V$ is a weak Prague instance if
(for every $x, y \in V, B \subseteq P_{x}$ and patterns p, q from x to x)

- It is 1-minimal ($P_{x y}$ is a subdirect subset of $P_{x} \times P_{y}$)
- If $B+p=B$ then $B-p=B$
- If $B+p+q=B$ then $B+p=B$
- Slightly weaker notion than Prague strategy
- Every Prague strategy has a solution (if $P_{x y}$'s are invariant under Pol Г...) BK
- Every weak Prague strategy has a solution K

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
- ...W..........W......OOO......RRR..........K......K.......

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
- ...W..........W......OOO......RRR.........K......K.......
-W..........W....O......O.....R.....R......K...K.......

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
\qquad
- ...W..........W......OOO......RRR.........K......K.......
-W..........W....O......O.....R.....R......K...K.......
- ...W...W...W....O......O......RRR........KK.

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
\qquad
-W..........W......OOO......RRR K......K
-W..........W....O......O.....R.....R......K...K.......
-W...W...W....O......O......RRR........KK
- ...W...W...W....O......O.....R.....R......K...K..........

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
$-$
$-$
-W..........W......OOO......RRR
K......K
-W..........W....O.....O.....R.....R......K...K.......
-W...W...W....O......O......RRR........KK
-W...W...W....O......O.....R.....R......K...K..
-W...W.........OOO.......R.......R....K......K......

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
\qquad
- ...W..........W......OOO......RRR.........K......K.......
-W..........W....O......O.....R.....R......K...K.......
-W...W...W....O......O......RRR........KK
- ...W...W...W....O......O.....R.....R......K...K..........
-W...W.........OOO.......R.......R....K......K......

General case

- $\operatorname{SDPOpt}(\Gamma)=1-\varepsilon, \varepsilon$ small
- We define $P_{x y}=\left\{(a, b): \mathbf{x}_{a} \mathbf{x}_{b}>\delta\right\}$
- If δ is big enough then for almost all x, y we have $P_{x y} \subseteq R_{x y}$
- If δ is small enough then the calculations will almost work...
- ...
- ...W..........W......OOO......RRR.........K......K.......
-W..........W....O......O.....R.....R......K...K.......
-W...W...W....O......O......RRR........KK
-W...W...W....O......O.....R.....R......K...K..........
-W...W.........OOO.......R.......R....K......K......
. QED

Final remarks

- Is the quantitative dependence optimal?

Final remarks

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?

Final remarks

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

Final remarks

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

- SDP, LP outputs \leftrightarrow consistency notions (within CSP). What is the precise connection?
Is there any connection beyond CSPs?

Final remarks

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

- SDP, LP outputs \leftrightarrow consistency notions (within CSP). What is the precise connection?
Is there any connection beyond CSPs?
- Thank you!

