Robust algorithms for CSPs

Libor Barto

joint work with Marcin Kozik

McMaster University and Charles University in Prague

AAA 83 Novi Sad, March 15, 2012

- (Part 2) Introduction
- (Part 3) Problem
- (Part 4) Problem solved
- (Part 5) Proof of a different result
- (Part 6) Proof of one more different result

(Part 2) Introduction Definition (Instance of the CSP)

Instance of the CSP consists of:

- V ... a set of variables
- ▶ A . . . a **domain**
- ▶ list of **constraints** of the form $R(x_1, ..., x_k)$, where
 - $x_1,\ldots,x_k \in V$
 - ▶ *R* is a *k*-ary relation on *A* (i.e. $R \subseteq A^k$) constraint relation

Definition (Instance of the CSP)

Instance of the CSP consists of:

- V ... a set of variables
- ▶ A . . . a **domain**
- ▶ list of **constraints** of the form $R(x_1, ..., x_k)$, where
 - $x_1, \ldots, x_k \in V$
 - ▶ *R* is a *k*-ary relation on *A* (i.e. $R \subseteq A^k$) constraint relation

An assignment $f: V \to A$ satisfies $R(x_1, \ldots, x_k)$, if $(f(x_1), \ldots, f(x_k)) \in R$

 $f: V \rightarrow A$ is a solution if it satisfies all the constraints

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least 0.7 × Optimum constraints

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least 0.7 × Optimum constraints

Definition

An algorithm (α, β) -approximates CSP $(0 \le \alpha \le \beta \le 1)$ if it returns an assignment satisfying α -fraction of the constraints given a β -satisfiable instance.

Some questions we can ask

- Decision CSP: Does a solution exist?
- Max-CSP: Find a map satisfying maximum number of constraints
- Approx. Max-CSP: Find a map satisfying at least 0.7 × Optimum constraints

Definition

An algorithm (α, β) -approximates CSP $(0 \le \alpha \le \beta \le 1)$ if it returns an assignment satisfying α -fraction of the constraints given a β -satisfiable instance.

Example

 $(0.7\beta,\beta)$ -approximating algorithm returns a map satisfying at least 0.7 × *Optimum* constraints.

Mentioned problems are computationally hard

One possible restriction (widely studied) — fix a set of possible constraint relations:

Definition

A constraint language Γ is a finite set of relations on a finite set A.

An instance of $CSP(\Gamma)$ is a CSP instance such that every constraint relation is from Γ .

Example: 2-coloring

$$A = \{0,1\}, \ \Gamma = \{R\}, \ R = \{(0,1), (1,0)\}$$
 (inequality)

Instance: $R(x_1, x_2), R(x_1, x_3), R(x_2, x_4), \dots$ (can be drawn as a graph)

Solution = 2-coloring (bipartition)

- **Decision** $CSP(\Gamma)$: Is a given graph bipartite? (easy)
- Max-CSP(Γ): also called Max-Cut (hard)
- Approx. Max-CSP(Γ)
 - $(0.5\beta,\beta)$ -approx easy
 - (0.878 β , β)-approx easy Goemans and Williamson'95
 - ► (16/17β, β)-approx hard Trevisan, Sorkin, Sudan, Williamson'00, Hastad'01
 - ► ((0.878 + ε)β, β) approx UGC-hard Khot, Kindler, Mossel, O'Donnel'07

 $A = \{0, 1\}, \ \Gamma = \{R_{000}, R_{001}, R_{011}, R_{111}\}, \ R_{ijk} = \{0, 1\}^3 \{(i, j, k)\}$

Instance: $R_{000}(x_1, x_2, x_3), R_{001}(x_1, x_3, x_5), R_{011}(x_3, x_2, x_6)$

or: $(x_1 \lor x_2 \lor x_3) \& (x_1 \lor \neg x_3 \lor \neg x_5) \& (x_3 \lor \neg x_2 \lor \neg x_6)$

- Decision CSP(Γ): 3-SAT (hard)
- Max-CSP(Γ): Max-3-SAT (hard)
- Approx. Max- $CSP(\Gamma)$:
 - $(7/8\beta, \beta)$ -approx easy Karloff, Zwick'96
 - (δ, 1)-approx hard for some δ < 1 (=PCP theorem, Arora, Lund, Motwani, Sudan, Szegedy'98)
 - $(7/8 + \varepsilon, 1)$ -approx hard Hastad'01

 $A = \{0, 1\}, \ \Gamma = \{affine \ subspaces \ of \ Z_2^3\}$

Instance: system of linear equation over Z_2 (each equation contains at most 3 variables)

- **Decision** *CSP*(Γ): easy (Gaussian elimination)
- Max-CSP(Γ): hard
- **Approx. Max**-*CSP*(Γ):
 - $(1/2\beta,\beta)$ -approx easy
 - $(1/2 + \varepsilon, 1 \varepsilon)$ -approx hard Hastad'01

(Part 3) Problem

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

Motivation: Instances close to satisfiable (e.g. corrupted by noise), we want to find an "almost solution".

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

2-SAT, HORN-SAT have robust algorithms Zwick'98

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
 - $(1 O(\varepsilon^{1/3}), 1 \varepsilon)$ -approx algorithm for 2-SAT
 - $(1 O(1/(\log(1/\varepsilon))), 1 \varepsilon)$ -approx algorithm for HORN-SAT

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for CSP(Γ) is NP-complete, then CSP(Γ) has no robust algorithm (PCP, for |A| = 2 Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for CSP(Γ) is NP-complete, then CSP(Γ) has no robust algorithm (PCP, for |A| = 2 Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)
- LIN-p has no robust algorithm Hastad'01

 $\operatorname{CSP}(\Gamma)$ admits a robust algorithm, if there is a polynomial time algorithm which $(1 - g(\varepsilon), 1 - \varepsilon)$ -approximates $\operatorname{CSP}(\Gamma)$ (for every ε), where $g(\varepsilon) \to 0$ when $\varepsilon \to 0$, and g(0) = 0.

- 2-SAT, HORN-SAT have robust algorithms Zwick'98
- If the decision problem for CSP(Γ) is NP-complete, then CSP(Γ) has no robust algorithm (PCP, for |A| = 2 Khanna,Sudan,Trevisan, Williamson'00 for larger Jonsson, Krokhin, Kuivinen'09)
- LIN-p has no robust algorithm Hastad'01

What distinguishes between LIN-p, 3-SAT and 2-SAT, HORN-SAT?

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00
- CSP(Γ) has bounded width iff it can be solved by local consistency checking

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00
- CSP(Γ) has bounded width iff it can be solved by local consistency checking
- CSP(Γ) has bounded width iff Γ "cannot encode linear equations", more precisely, HSP(Pol Γ) does not contain a reduct of a module (for core Γ) Barto, Kozik'09 Bulatov'09

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00
- CSP(Γ) has bounded width iff it can be solved by local consistency checking
- CSP(Γ) has bounded width iff Γ "cannot encode linear equations", more precisely, HSP(Pol Γ) does not contain a reduct of a module (for core Γ) Barto, Kozik'09 Bulatov'09
- Lin-p, 3-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00
- CSP(Γ) has bounded width iff it can be solved by local consistency checking
- CSP(Γ) has bounded width iff Γ "cannot encode linear equations", more precisely, HSP(Pol Γ) does not contain a reduct of a module (for core Γ) Barto, Kozik'09 Bulatov'09
- Lin-p, 3-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width !!!

- Pol Γ = clone of polymorphisms (operations compatible with all relations in Γ)
- Complexity of the decision problem for CSP(Γ) controlled by HSP(Pol Γ) Bulatov, Jeavons, Krokhin 00
- CSP(Γ) has bounded width iff it can be solved by local consistency checking
- CSP(Γ) has bounded width iff Γ "cannot encode linear equations", more precisely, HSP(Pol Γ) does not contain a reduct of a module (for core Γ) Barto, Kozik'09 Bulatov'09
- ► Lin-*p*, 3-SAT do not have bounded width, 2-SAT, HORN-SAT have bounded width

Conjecture (Guruswami-Zhou 11)

 $\mathrm{CSP}(\Gamma)$ admits a robust algorithm iff $\mathrm{CSP}(\Gamma)$ has bounded width.

 robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11

 $\blacktriangleright \Rightarrow$ one direction of the Guruswami-Zhou conjecture is true

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- $\blacktriangleright \Rightarrow$ one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11.
 width 1 iff linear programming relaxation can be used.

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \blacktriangleright \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11.
 width 1 iff linear programming relaxation can be used.

Conjecture confirmed Barto, Kozik'11.

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \blacktriangleright \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11.
 width 1 iff linear programming relaxation can be used.
- Conjecture confirmed Barto, Kozik'11. Using a semidefinite programming relaxation and Prague strategies.
 - Randomized $(1 O(\log \log(1/\varepsilon) / \log(1/\varepsilon)), 1 \varepsilon)$ -approx algorithm
 - ► Deterministic $(1 O(\log \log(1/\varepsilon))/\sqrt{\log(1/\varepsilon)}), 1 \varepsilon)$ -approx algorithm

- robust approximation also (+-) controlled by polymorphisms Dalmau, Krokhin'11
- \blacktriangleright \Rightarrow one direction of the Guruswami-Zhou conjecture is true
- Conjecture confirmed for width 1 CSPs Kun, O'Donell, Tamaki, Yoshida, Zhou'11, Dalmau, Krokhin'11.
 width 1 iff linear programming relaxation can be used.
- Conjecture confirmed Barto, Kozik'11. Using a semidefinite programming relaxation and Prague strategies.
 - ▶ Randomized $(1 O(\log \log(1/\varepsilon) / \log(1/\varepsilon)), 1 \varepsilon)$ -approx algorithm
 - ► Deterministic $(1 O(\log \log(1/\varepsilon))/\sqrt{\log(1/\varepsilon)}), 1 \varepsilon)$ -approx algorithm
- Bonus Krokhin'11: even the quantitative dependence on ε is +- controlled by polymorphisms.

This was (Part 4) Problem solved

Now (Part 5) Proof of a different result

MAX-CUT Goemans and Williamson'95

 $A = \{-1, 1\}, \ \Gamma = \{R\}, \ R = \{(-1, 1), (1, -1)\} \text{ (inequality)}$ Instance $\mathcal{I}: \ V = \{x_1, x_2, \dots, \}, \ \mathcal{C} = R(x_2, x_1), R(x_1, x_4), \dots$

MAX-CUT Goemans and Williamson'95

$$A = \{-1, 1\}, \ \Gamma = \{R\}, \ R = \{(-1, 1), (1, -1)\} \text{ (inequality)}$$

Instance $\mathcal{I}: \ V = \{x_1, x_2, \dots, \}, \ \mathcal{C} = R(x_2, x_1), R(x_1, x_4), \dots$

Max-CSP - hard:

Find numbers $f(x), x \in V, f(x) \in \{-1, 1\}$ which maximize

$$\operatorname{Opt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y)\in\mathcal{C}} \frac{1-f(x)f(y)}{2}$$

MAX-CUT Goemans and Williamson'95

$$A = \{-1, 1\}, \ \Gamma = \{R\}, \ R = \{(-1, 1), (1, -1)\} \text{ (inequality)}$$

Instance $\mathcal{I}: \ V = \{x_1, x_2, \dots, \}, \ \mathcal{C} = R(x_2, x_1), R(x_1, x_4), \dots$

Max-CSP – hard:

Find numbers $f(x), x \in V, f(x) \in \{-1, 1\}$ which maximize

$$\operatorname{Opt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y)\in\mathcal{C}} \frac{1-f(x)f(y)}{2}$$

SDP (semidefinite programming) relaxation – easy: Find vectors $g(x), x \in V$, $||g(x)||^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y)\in\mathcal{C}} \frac{1-g(x)g(y)}{2}$$

MAX-CUT cont'd

Find vectors $g(x), x \in V, \ \|g(x)\|^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y)\in\mathcal{C}} \frac{1-g(x)g(y)}{2}$$
MAX-CUT cont'd

Find vectors $g(x), x \in V$, $||g(x)||^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y) \in \mathcal{C}} \frac{1 - g(x)g(y)}{2}$$

▶ $SDPOpt(\mathcal{I}) \ge Opt(\mathcal{I})$, if $SDPOpt(\mathcal{I}) = 1$ then $Opt(\mathcal{I}) = 1$.

Find vectors $g(x), x \in V$, $||g(x)||^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y) \in \mathcal{C}} \frac{1 - g(x)g(y)}{2}$$

- ▶ $SDPOpt(\mathcal{I}) \ge Opt(\mathcal{I})$, if $SDPOpt(\mathcal{I}) = 1$ then $Opt(\mathcal{I}) = 1$.
- We need to round the vector solution g to a reasonably good assignment f

Find vectors $g(x), x \in V$, $||g(x)||^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y) \in \mathcal{C}} \frac{1 - g(x)g(y)}{2}$$

- ▶ $SDPOpt(\mathcal{I}) \ge Opt(\mathcal{I})$, if $SDPOpt(\mathcal{I}) = 1$ then $Opt(\mathcal{I}) = 1$.
- We need to round the vector solution g to a reasonably good assignment f
 - Choose a random hyperplane through the origin and choose one side S
 - Put f(v) = 1 if $g(v) \in S$ and f(v) = -1 otherwise

Find vectors $g(x), x \in V$, $||g(x)||^2 = 1$ which maximize

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R(x,y) \in \mathcal{C}} \frac{1 - g(x)g(y)}{2}$$

- ▶ $SDPOpt(\mathcal{I}) \ge Opt(\mathcal{I})$, if $SDPOpt(\mathcal{I}) = 1$ then $Opt(\mathcal{I}) = 1$.
- We need to round the vector solution g to a reasonably good assignment f
 - Choose a random hyperplane through the origin and choose one side S
 - Put f(v) = 1 if $g(v) \in S$ and f(v) = -1 otherwise
- This is $(0.878\beta, \beta)$ -approx and robust algorithm

(Part 6) Proof of one more different result

Notation and simplifying assumptions:

- ► A domain
- F contains only binary relations, $CSP(\Gamma)$ has bounded width
- ▶ V variables, I instance, C constraints

Notation and simplifying assumptions:

- ► A domain
- F contains only binary relations, $CSP(\Gamma)$ has bounded width
- ▶ V variables, I instance, C constraints
- ▶ $\forall \{x, y\} \subseteq V$, $x \neq y$ there is at most one constraint $R_{xy}(x, y) \in C$

[picture]

Notation and simplifying assumptions:

- ► A domain
- F contains only binary relations, $CSP(\Gamma)$ has bounded width
- ▶ V variables, I instance, C constraints
- ▶ $\forall \{x, y\} \subseteq V$, $x \neq y$ there is at most one constraint $R_{xy}(x, y) \in C$
- ▶ $Opt(\mathcal{I})$ optimal fraction of satisfied constraints
- ... and we want to find an assignment satisfying a big fraction of the constraints)

[picture]

Notation and simplifying assumptions:

- ► A domain
- F contains only binary relations, $CSP(\Gamma)$ has bounded width
- ▶ V variables, I instance, C constraints
- ▶ $\forall \{x, y\} \subseteq V$, $x \neq y$ there is at most one constraint $R_{xy}(x, y) \in C$
- $Opt(\mathcal{I})$ optimal fraction of satisfied constraints
- ... and we want to find an assignment satisfying a big fraction of the constraints)

[picture]

Canonical SDP relaxation is strong enough to get optimal approximation constants (assuming UGC) Raghavendra'08 Let's try to use it for our problem.

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$)

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$) such that for all $x, y \in V$, $a, b \in A$

▶ (SDP1)
$$\mathbf{x}_a \mathbf{y}_b \ge 0$$

• (SDP2)
$$\mathbf{x}_a \mathbf{x}_b = 0$$
 if $a \neq b$

• (SDP3)
$$\mathbf{x}_A = \mathbf{y}_A$$
, $\|\mathbf{x}_A\|^2 = 1$

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$) such that for all $x, y \in V$, $a, b \in A$

► (SDP1)
$$\mathbf{x}_a \mathbf{y}_b \ge 0$$

• (SDP2)
$$\mathbf{x}_a \mathbf{x}_b = 0$$
 if $a \neq b$

• (SDP3)
$$\mathbf{x}_A = \mathbf{y}_A$$
, $\|\mathbf{x}_A\|^2 = 1$

maximizing

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R_{xy}(\mathbf{x}, y) \in \mathcal{C}} \sum_{(a,b) \in R_{xy}} \mathbf{x}_a \mathbf{y}_b.$$

Intuition:

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$) such that for all $x, y \in V$, $a, b \in A$

(SDP1)
$$\mathbf{x}_a \mathbf{y}_b \ge 0$$

• (SDP2)
$$\mathbf{x}_a \mathbf{x}_b = 0$$
 if $a \neq b$

• (SDP3)
$$\mathbf{x}_A = \mathbf{y}_A$$
, $\|\mathbf{x}_A\|^2 = 1$

maximizing

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R_{xy}(x,y) \in \mathcal{C}} \sum_{(a,b) \in R_{xy}} \mathbf{x}_a \mathbf{y}_b.$$

Intuition:

x_ay_b is a weight (nonnegative) of the pair (a, b) between variables x, y

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$) such that for all $x, y \in V$, $a, b \in A$

(SDP1)
$$\mathbf{x}_a \mathbf{y}_b \ge 0$$

• (SDP2)
$$\mathbf{x}_a \mathbf{x}_b = 0$$
 if $a \neq b$

• (SDP3)
$$\mathbf{x}_A = \mathbf{y}_A, \|\mathbf{x}_A\|^2 = 1$$

maximizing

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R_{xy}(x,y) \in \mathcal{C}} \sum_{(a,b) \in R_{xy}} \mathbf{x}_a \mathbf{y}_b.$$

Intuition:

- x_ay_b is a weight (nonnegative) of the pair (a, b) between variables x, y
- Sum of all weights (between x, y) is 1 from (SDP3)

Find vectors $g(x, a) =: \mathbf{x}_a, x \in V, a \in A$ (notation: $\mathbf{x}_B = \sum_{a \in B} \mathbf{x}_a$) such that for all $x, y \in V$, $a, b \in A$

(SDP1)
$$\mathbf{x}_a \mathbf{y}_b \ge 0$$

• (SDP2)
$$\mathbf{x}_a \mathbf{x}_b = 0$$
 if $a \neq b$

• (SDP3)
$$\mathbf{x}_A = \mathbf{y}_A, \|\mathbf{x}_A\|^2 = 1$$

maximizing

$$\mathrm{SDPOpt}(\mathcal{I}) = \frac{1}{|\mathcal{C}|} \sum_{R_{xy}(x,y) \in \mathcal{C}} \sum_{(a,b) \in R_{xy}} \mathbf{x}_a \mathbf{y}_b.$$

Intuition:

- ► x_ay_b is a weight (nonnegative) of the pair (a, b) between variables x, y
- Sum of all weights (between x, y) is 1 from (SDP3)
- We are trying to give small weights to pairs outside R_{xy}

 We try to produce a good assignment from the SDP output vectors.

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if SDPOpt(I) = 1 then I has a solution? This was suggested by Guruswami as the first step to attack the conjecture

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if SDPOpt(I) = 1 then I has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\text{SDPOpt}(\mathcal{I}) = 1$.

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if SDPOpt(I) = 1 then I has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\text{SDPOpt}(\mathcal{I}) = 1$.
- ▶ It follows that $\mathbf{x}_a \mathbf{y}_b = 0$ for every $(a, b) \notin R_{xy}$

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if SDPOpt(I) = 1 then I has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\text{SDPOpt}(\mathcal{I}) = 1$.
- ▶ It follows that $\mathbf{x}_a \mathbf{y}_b = 0$ for every $(a, b) \notin R_{xy}$
- ▶ Define P_{xy} = {(a, b) ∈ A² : x_ay_b > 0}. Replace R_{xy} with P_{xy}. If the new instance has a solution then the old one has a solution.

- We try to produce a good assignment from the SDP output vectors.
- In particular, is it true that if SDPOpt(I) = 1 then I has a solution? This was suggested by Guruswami as the first step to attack the conjecture
- So, assume $\text{SDPOpt}(\mathcal{I}) = 1$.
- ▶ It follows that $\mathbf{x}_a \mathbf{y}_b = 0$ for every $(a, b) \notin R_{xy}$
- ▶ Define P_{xy} = {(a, b) ∈ A² : x_ay_b > 0}. Replace R_{xy} with P_{xy}. If the new instance has a solution then the old one has a solution.
- ▶ Define $P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$. And let's see what we get

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

• P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality)

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

• P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality)

- It is a subset: If $\mathbf{x}_a \mathbf{y}_b > 0$ then $\mathbf{x}_a, \mathbf{y}_b \neq \mathbf{0}$
- It is subdirect: If x_a ≠ o then 0 ≠ ||x_a||² = x_ax_A = x_ay_A, therefore x_ay_b ≠ 0 for some b

$$P_{xy} = \{(a,b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, \ P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

► P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality) For $B \subseteq P_x$ let $B + (x, y) = \{c \in A : (\exists b \in B) (b, c) \in P_{xy}\}$

► For
$$B \subseteq P_x$$
, we have $\mathbf{y}_{B+(x,y)} = \mathbf{x}_B + \mathbf{w}$,
where $\mathbf{w}\mathbf{x}_B = 0$, and $\mathbf{w} = \mathbf{o}$ iff $B = B + (x, y) - (x, y)$.

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

► P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality) For $B \subseteq P_x$ let $B + (x, y) = \{c \in A : (\exists b \in B) (b, c) \in P_{xy}\}$

- ► For $B \subseteq P_x$, we have $\mathbf{y}_{B+(x,y)} = \mathbf{x}_B + \mathbf{w}$, where $\mathbf{w}\mathbf{x}_B = 0$, and $\mathbf{w} = \mathbf{0}$ iff B = B + (x, y) - (x, y).
 - $\mathbf{w}\mathbf{x}_B = (\mathbf{y}_{B+(x,y)} \mathbf{x}_B)\mathbf{x}_B = \mathbf{y}_{B+(x,y)}\mathbf{x}_B \mathbf{x}_B\mathbf{x}_B = \mathbf{y}_{B+(x,y)}\mathbf{x}_B \mathbf{y}_{A}\mathbf{x}_B = -(\mathbf{y}_A \mathbf{y}_{B+(x,y)})\mathbf{x}_B = -\mathbf{y}_{A-(B+(x,y))}\mathbf{x}_B = 0$

• ww =
$$\cdots$$
 = $\mathbf{x}_{A-B}\mathbf{y}_{B+(x,y)}$

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

▶ P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality) For $B \subseteq P_x$ let $B + (x, y) = \{c \in A : (\exists b \in B) (b, c) \in P_{xy}\}$

For
$$B \subseteq P_x$$
, we have $\mathbf{y}_{B+(x,y)} = \mathbf{x}_B + \mathbf{w}$,
where $\mathbf{w}\mathbf{x}_B = 0$, and $\mathbf{w} = \mathbf{o}$ iff $B = B + (x, y) - (x, y)$.

A (correct) sequence of variables is called a pattern B + p, B - p defined in a natural way for a pattern p

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

▶ P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality) For $B \subseteq P_x$ let $B + (x, y) = \{c \in A : (\exists b \in B) (b, c) \in P_{xy}\}$

► For $B \subseteq P_x$, we have $\mathbf{y}_{B+(x,y)} = \mathbf{x}_B + \mathbf{w}$, where $\mathbf{w}\mathbf{x}_B = 0$, and $\mathbf{w} = \mathbf{o}$ iff B = B + (x, y) - (x, y).

A (correct) sequence of variables is called a pattern B + p, B - p defined in a natural way for a pattern p

For any $B \subseteq P_x$ and patterns p, q from x to x we have

• If
$$B + p = B$$
 then $B - p = B$

$$P_{xy} = \{(a, b) \in A^2 : \mathbf{x}_a \mathbf{y}_b > 0\}, P_x = \{a \in A : \mathbf{x}_a \neq \mathbf{o}\}$$

▶ P_{xy} is a subdirect subset of $P_x \times P_y$ (1-minimality) For $B \subseteq P_x$ let $B + (x, y) = \{c \in A : (\exists b \in B) (b, c) \in P_{xy}\}$

► For $B \subseteq P_x$, we have $\mathbf{y}_{B+(x,y)} = \mathbf{x}_B + \mathbf{w}$, where $\mathbf{w}\mathbf{x}_B = 0$, and $\mathbf{w} = \mathbf{o}$ iff B = B + (x, y) - (x, y).

A (correct) sequence of variables is called a pattern B + p, B - p defined in a natural way for a pattern p

For any $B \subseteq P_x$ and patterns p, q from x to x we have

• If
$$B + p = B$$
 then $B - p = B$

• If
$$B + p + q = B$$
 then $B + p = B$

The new instance with constraints $P_{xy}(x, y)$ and subsets $P_x \subseteq A, x \in V$ satisfies (for every $x, y \in V$, $B \subseteq P_x$ and patterns p, q from x to x)

▶ It is 1-minimal $(P_{xy}$ is a subdirect subset of $P_x \times P_y$)

• If
$$B + p = B$$
 then $B - p = B$

• If
$$B + p + q = B$$
 then $B + p = B$

Definition

An instance with constraints $P_{xy}(x, y)$ and subsets $P_x \subseteq A, x \in V$ is a weak Prague instance if (for every $x, y \in V$, $B \subseteq P_x$ and patterns p, q from x to x)

- ▶ It is 1-minimal $(P_{xy}$ is a subdirect subset of $P_x \times P_y)$
- If B + p = B then B p = B
- If B + p + q = B then B + p = B

Definition

An instance with constraints $P_{xy}(x, y)$ and subsets $P_x \subseteq A, x \in V$ is a weak Prague instance if (for every $x, y \in V$, $B \subseteq P_x$ and patterns p, q from x to x)

▶ It is 1-minimal $(P_{xy} \text{ is a subdirect subset of } P_x \times P_y)$

• If
$$B + p = B$$
 then $B - p = B$

• If
$$B + p + q = B$$
 then $B + p = B$

- Slightly weaker notion than Prague strategy
- Every Prague strategy has a solution (if P_{xy}'s are invariant under Pol Γ...) BK

Definition

An instance with constraints $P_{xy}(x, y)$ and subsets $P_x \subseteq A, x \in V$ is a weak Prague instance if (for every $x, y \in V$, $B \subseteq P_x$ and patterns p, q from x to x)

▶ It is 1-minimal $(P_{xy}$ is a subdirect subset of $P_x \times P_y)$

• If
$$B + p = B$$
 then $B - p = B$

• If
$$B + p + q = B$$
 then $B + p = B$

- Slightly weaker notion than Prague strategy
- Every Prague strategy has a solution (if P_{xy}'s are invariant under Pol Γ...) BK
- Every weak Prague strategy has a solution K

- $\text{SDPOpt}(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$

- $SDPOpt(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$
- ▶ If δ is big enough then for almost all x, y we have $P_{xy} \subseteq R_{xy}$

- $\text{SDPOpt}(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$
- ▶ If δ is big enough then for almost all x, y we have $P_{xy} \subseteq R_{xy}$
- If δ is small enough then the calculations will almost work...

- $SDPOpt(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$
- ▶ If δ is big enough then for almost all x, y we have $P_{xy} \subseteq R_{xy}$
- If δ is small enough then the calculations will almost work...
-
- $SDPOpt(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$
- ▶ If δ is big enough then for almost all x, y we have $P_{xy} \subseteq R_{xy}$
- If δ is small enough then the calculations will almost work...

- $\text{SDPOpt}(\Gamma) = 1 \varepsilon$, ε small
- We define $P_{xy} = \{(a, b) : \mathbf{x}_a \mathbf{x}_b > \delta\}$
- ▶ If δ is big enough then for almost all x, y we have $P_{xy} \subseteq R_{xy}$
- If δ is small enough then the calculations will almost work...

.....W......W......000......RRR......K......K......

Is the quantitative dependence optimal?

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

 SDP, LP outputs ↔ consistency notions (within CSP). What is the precise connection? Is there any connection beyond CSPs?

- Is the quantitative dependence optimal?
- How to improve derandomization to match the randomized version?
- What can we say about the quantitative dependence on ε in general?

Wild guess: NU \Rightarrow polynomial loss

 SDP, LP outputs ↔ consistency notions (within CSP). What is the precise connection? Is there any connection beyond CSPs?

Thank you!