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Nilpotent groups

Theorem (classical result from group theory)

Let G be a finite nilpotent group. Then G is isomorphic to a
direct product of groups of prime power order.

Sketch of the proof

Let Sp be a p-Sylow subgroup of G. Since G is nilpotent,
NG(H) > H for all H < G. By Sylow, NG(NG(Sp)) ≤ NG(Sp),
hence NG(Sp) = G, and thus Sp E G.



Description of nilpotent groups

Theorem (Characterisations of nilpotent groups)

Let G be a finite group, k ∈ N. TFAE

1. G is nilpotent of class k
:⇔ the lower central series γ1(G) := G, γn(G) := [G, γn−1(G)]

satisfies |γk (G)| > 1, |γk+1(G)| = 1;

2. k is minimal in N with

∃p ∈ R[x ] : deg(p) = k and ∀n : |FV(G)(n)| ≤ 2p(n);

3. the supremum of “the rank of commutator terms of G” is k
(see [Kearnes, 1999]);

4. |[[G,G, . . . ,G]]k | > 1 and |[[G,G, . . . ,G]]k+1| = 1 (see
[Mudrinski, 2009]).



Nilpotence for expanded groups

Definition (Nilpotent expanded groups)

Let V = 〈V ,+,−,0, f1, f2, . . .〉 be an expanded group, A,B E V.

[[A,B]] := {p(a,b) |||p ∈ Pol2(V),

a ∈ A, b ∈ B, p(0,0) = p(a,0) = p(0,b) = 0}.

V is nilpotent of class k if for γ1(V) := V , γn(V) := [[V , γn−1(V)]]
we have |γk (V)| > 1, |γk+1(V)| = 1.

Remarks on [[•, •]]

◮ In expanded groups, we consider ideals = 0-classes of
congruences instead of congruences.

◮ [[A,B]] then corresponds to the term-condition commutator
introduced in
[Freese and McKenzie, 1987, McKenzie et al., 1987].



Example of a nilpotent expanded group

A nilpotent expansion of 〈Z6,+〉

Let f : Z6 → Z6 be defined by

x f (x)
0 3
1 0
2 0
3 3
4 0
5 0.

Then V6 := 〈Z6,+,−,0, f 〉 is nilpotent of class 2, and its
congruence lattice is a three element chain.



Facts on V6

Lemma

V6 is directly indecomposable, and |FV(V6)(n)| ≥ 22n
for all

n ∈ N.



Kearnes’s decomposition theorem

As a corollary of [Kearnes, 1999, Theorem 3.14] and
[Hobby and McKenzie, 1988, Lemma 12.4], one obtains:

Theorem ([Kearnes, 1999])
Let A be a finite Mal’cev algebra such that ∃p ∈ R[x ] with

|FV(A)(n)| ≤ 2p(n) for all n ∈ N.

Then A is nilpotent and isomorphic to a direct product of
algebras of prime power order.

Theorem ([Berman and Blok, 1987, Theorem 2])

Let A be finite, in a congruence modular variety, of finite type,
nilpotent, direct product of algebras of prime power order. Then

∃p ∈ R[x ] : |FV(A)(n)| = 2p(n) for all n ∈ N.



Absorbing polynomials and supernilpotence

Definition

V = 〈V ,+,−,0, f1, f2, . . .〉 expanded group, p ∈ PolnV. p is
absorbing :⇔ ∀x : 0 ∈ {x1, . . . , xn} ⇒ p(x1, . . . , xn) = 0.

Definition (supernilpotent)

V expanded group, k ∈ N. V is supernilpotent of class k : ⇔

1. there is a nonconstant absorbing p ∈ Polk (V), and

2. ∀ n > k all n-ary absorbing polynomials are constant.



Characterisation of supernilpotent expanded groups

Lemma (Description of finite snp expanded groups)

Let W be a finite expanded group, k ∈ N. TFAE

1. W is supernilpotent of class k ∈ N;

2. k is minimal in N with

∃p ∈ R[x ] : deg(p) = k and ∀n : |FV(W)(n)| ≤ 2p(n);

3. the supremum of “the rank of commutator terms of W” is k
(see [Kearnes, 1999]);

4. |[[W ,W , . . . ,W ]]k | > 1 and |[[W ,W , . . . ,W ]]k+1| = 1 (see
[Mudrinski, 2009]).



Connections between nilpotent and supernilpotent

Lemma (Groups)

Let G be group. Then G is nilpotent of class k ⇔ G is
supernilpotent of class k .

Remark

⇒ requires commutator calculus; calculations done in
[Aichinger and Ecker, 2006].

Lemma (Expanded groups)

A supernilpotent expanded group of class k is nilpotent of class
≤ k .

Corollary of [Berman and Blok, 1987, Theorem 2]

A finite nilpotent expanded group of finite type and prime power
order is supernilpotent.



Connections between nilpotent and supernilpotent

Theorem (EA, Mudrinski, 2011)

Let k ≥ 1, m ≥ 2, V = 〈V ,+,−,0, f1, f2, . . .〉 expanded group
such that all fi are “multilinear” and of arity ≤ m, and V is
nilpotent of class k . Then V is supernilpotent of class ≤ mk−1.

Remark (the bound can be attained)

For all k ≥ 1, m ≥ 2, there is a finite nilpotent V of class k with
all fi “multilinear” and of arity ≤ m such that V is supernilpotent
of class mk−1.



Colouring the prime sections of the congruence lattice

Definition (Characteristic of a prime section)

Let V be an expanded group, and let A ≺ B E V, [[B,B]] ≤ A.
Then char(A,B) is the exponent of 〈B/A,+〉.

Remark

R := 〈P0(V)/Ann(B/A),+, ◦〉 is a ring with simple module
M := B/A. Hence char(A,B) is the characteristic of the division
ring EndR(B/A).

Characteristic is prime or zero

Let V be an expanded group, and let A ≺ B E V, [[B,B]] ≤ A.
Then char(A,B) ∈ P ∪ {0}.



Monochromatic expanded groups

Definition (A generalisation of “prime power order”)

Let V be a solvable expanded group. V is monochromatic if all
prime sections in the ideal lattice have the same colour.

Theorem (EA, 2012)

Let V be a supernilpotent expanded group whose ideal lattice is
of finite height. Then V is isomorphic to a direct product of
finitely many monochromatic expanded groups.



Proof of this decomposition result

Lemma

Let R be a ring with unit, and let M be a unitary R-module such
that M has exactly three submodules; let Q be the submodule
different from 0 and M. Then the exponents of the groups
〈M/Q,+〉 and 〈Q,+〉 are equal.

Lemma (cf. [Mayr, 2008, Lemma 3])

Let V be a finite expanded group whose ideal lattice is a three
element chain {0} < Q < V . We assume that the exponents of
the groups 〈Q,+〉 and 〈V/Q,+〉 are different, and that
[V ,V ] = Q and [V ,Q] = 0. Then V is not supernilpotent.



Main tool in the proof

The operation of the polynomial ring

M := {p ∈ Pol1V : p(V ) ⊆ Q,
p is constant on each Q-coset},

R := Z[t], w ∈ V ,

r ⋆w m (x) :=
∑deg(r)

i=0 ri ∗ m(x + i ∗ w) for m ∈ M, x ∈ V .

Use of this operation

◮ For all m ∈ N, there is w ∈ V , f ∈ M such that

(t − 1)m ⋆w f is not constant.

◮ From this, we will produce absorbing polynomials of
arbitrary arity.



Produce absorbing polynomials of arbitrary arity

Task

Produce absorbing nonconstant polynomial of arity m.

Define a sequence

◮ Choose f ∈ M, w ∈ W such that (t − 1)m−1 ⋆w f is not
constant.

◮ Define
◮ h(1)(x1) := f (x1)− f (0).
◮ h(n)(x1, . . . , xn) :=

h(n−1)(x1 + xn, x2, . . . , xn−1)− h(n−1)(x1, x2, . . . , xn−1) +
h(n−1)(0, x2, . . . , xn−1)− h(n−1)(xn, x2, . . . , xn−1).

◮ Then h(n)(x1,w , . . . ,w) =
((t − 1)n−1 ⋆w f ) (x1)− ((t − 1)n−1 ⋆w f ) (0) for all x1 ∈ V .
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