On the direct decomposition of nilpotent expanded groups

Erhard Aichinger

Department of Algebra

Johannes Kepler University Linz, Austria

AAA83 \& CYA27, Novi Sad, March 2012 Supported by the Austrian Science Fund (FWF):P24077

Nilpotent groups

Theorem (classical result from group theory)

Let \mathbf{G} be a finite nilpotent group. Then \mathbf{G} is isomorphic to a direct product of groups of prime power order.

Sketch of the proof

Let S_{p} be a p-Sylow subgroup of \mathbf{G}. Since \mathbf{G} is nilpotent, $N_{G}(H)>H$ for all $H<G$. By Sylow, $N_{G}\left(N_{G}\left(S_{p}\right)\right) \leq N_{G}\left(S_{p}\right)$, hence $N_{G}\left(S_{p}\right)=G$, and thus $S_{p} \unlhd G$.

Description of nilpotent groups

Theorem (Characterisations of nilpotent groups)

Let \mathbf{G} be a finite group, $k \in \mathbb{N}$. TFAE

1. \mathbf{G} is nilpotent of class k
$: \Leftrightarrow$ the lower central series $\gamma_{1}(\mathbf{G}):=\mathbf{G}, \gamma_{n}(\mathbf{G}):=\left[\mathbf{G}, \gamma_{n-1}(\mathbf{G})\right]$ satisfies $\left|\gamma_{k}(\mathbf{G})\right|>1,\left|\gamma_{k+1}(\mathbf{G})\right|=1$;
2. k is minimal in \mathbb{N} with

$$
\exists p \in \mathbb{R}[x]: \operatorname{deg}(p)=k \text { and } \forall n:\left|\mathbf{F}_{\mathcal{V}(\mathbf{G})}(n)\right| \leq 2^{p(n)}
$$

3. the supremum of "the rank of commutator terms of \mathbf{G} " is k (see [Kearnes, 1999]);
4. $\left|\llbracket G, G, \ldots, G \rrbracket_{k}\right|>1$ and $\left|\llbracket G, G, \ldots, G \rrbracket_{k+1}\right|=1$ (see [Mudrinski, 2009]).

Nilpotence for expanded groups

Definition (Nilpotent expanded groups)

Let $\mathbf{V}=\left\langle V,+,-, 0, f_{1}, f_{2}, \ldots\right\rangle$ be an expanded group, $A, B \unlhd \mathbf{V}$.
$\llbracket A, B \rrbracket:=\left\{p(a, b) \mid p \in \operatorname{Pol}_{2}(\mathbf{V})\right.$,

$$
a \in A, b \in B, p(0,0)=p(a, 0)=p(0, b)=0\}
$$

\mathbf{V} is nilpotent of class k if for $\gamma_{1}(\mathbf{V}):=V, \gamma_{n}(\mathbf{V}):=\llbracket V, \gamma_{n-1}(\mathbf{V}) \rrbracket$ we have $\left|\gamma_{k}(\mathbf{V})\right|>1,\left|\gamma_{k+1}(\mathbf{V})\right|=1$.

Remarks on $\llbracket \bullet, \bullet \rrbracket$

- In expanded groups, we consider ideals $=0$-classes of congruences instead of congruences.
- $\llbracket A, B \rrbracket$ then corresponds to the term-condition commutator introduced in
[Freese and McKenzie, 1987, McKenzie et al., 1987].

Example of a nilpotent expanded group

A nilpotent expansion of $\left\langle\mathbb{Z}_{6},+\right\rangle$

Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ be defined by

x	$f(x)$
0	3
1	0
2	0
3	3
4	0
5	0.

Then $\mathbf{V}_{6}:=\left\langle\mathbb{Z}_{6},+,-, 0, f\right\rangle$ is nilpotent of class 2 , and its congruence lattice is a three element chain.

Facts on \mathbf{V}_{6}

Lemma
\mathbf{V}_{6} is directly indecomposable, and $\left|\mathbf{F}_{\mathcal{V}\left(\mathbf{V}_{6}\right)}(n)\right| \geq 2^{2^{n}}$ for all $n \in \mathbb{N}$.

Kearnes's decomposition theorem

As a corollary of [Kearnes, 1999, Theorem 3.14] and [Hobby and McKenzie, 1988, Lemma 12.4], one obtains:

Theorem ([Kearnes, 1999])

Let \mathbf{A} be a finite Mal'cev algebra such that $\exists p \in \mathbb{R}[x]$ with

$$
\left|\mathbf{F}_{\mathcal{V}(\mathbf{A})}(n)\right| \leq 2^{p(n)} \text { for all } n \in \mathbb{N} .
$$

Then \mathbf{A} is nilpotent and isomorphic to a direct product of algebras of prime power order.

Theorem ([Berman and Blok, 1987, Theorem 2])

Let \mathbf{A} be finite, in a congruence modular variety, of finite type, nilpotent, direct product of algebras of prime power order. Then

$$
\exists p \in \mathbb{R}[x]:\left|\mathbf{F}_{\mathcal{V}(\mathbf{A})}(n)\right|=2^{p(n)} \text { for all } n \in \mathbb{N} .
$$

Absorbing polynomials and supernilpotence

Definition

$\mathbf{V}=\left\langle V,+,-, 0, f_{1}, f_{2}, \ldots\right\rangle$ expanded group, $p \in \operatorname{Pol}_{n} \mathbf{V}$. p is absorbing : $\Leftrightarrow \forall \mathbf{x}: 0 \in\left\{x_{1}, \ldots, x_{n}\right\} \Rightarrow p\left(x_{1}, \ldots, x_{n}\right)=0$.

Definition (supernilpotent)

\mathbf{V} expanded group, $k \in \mathbb{N}$. \mathbf{V} is supernilpotent of class $k: \Leftrightarrow$

1. there is a nonconstant absorbing $p \in \operatorname{Pol}_{k}(\mathbf{V})$, and
2. $\forall n>k$ all n-ary absorbing polynomials are constant.

Characterisation of supernilpotent expanded groups

Lemma (Description of finite snp expanded groups)

Let \mathbf{W} be a finite expanded group, $k \in \mathbb{N}$. TFAE

1. \mathbf{W} is supernilpotent of class $k \in \mathbb{N}$;
2. k is minimal in \mathbb{N} with

$$
\exists p \in \mathbb{R}[x]: \operatorname{deg}(p)=k \text { and } \forall n:\left|\mathbf{F}_{\mathcal{V}(\mathbf{W})}(n)\right| \leq 2^{p(n)} ;
$$

3. the supremum of "the rank of commutator terms of \mathbf{W} " is k (see [Kearnes, 1999]);
4. $\left|\llbracket W, W, \ldots, W \rrbracket_{k}\right|>1$ and $\left|\llbracket W, W, \ldots, W \rrbracket_{k+1}\right|=1$ (see [Mudrinski, 2009]).

Connections between nilpotent and supernilpotent

Lemma (Groups)

Let \mathbf{G} be group. Then \mathbf{G} is nilpotent of class $k \Leftrightarrow \mathbf{G}$ is supernilpotent of class k.

Remark

\Rightarrow requires commutator calculus; calculations done in
[Aichinger and Ecker, 2006].
Lemma (Expanded groups)
A supernilpotent expanded group of class k is nilpotent of class $\leq k$.

Corollary of [Berman and Blok, 1987, Theorem 2]
A finite nilpotent expanded group of finite type and prime power order is supernilpotent.

Connections between nilpotent and supernilpotent

Theorem (EA, Mudrinski, 2011)

Let $k \geq 1, m \geq 2, \mathbf{V}=\left\langle V,+,-, 0, f_{1}, f_{2}, \ldots\right\rangle$ expanded group such that all f_{i} are "multilinear" and of arity $\leq m$, and \mathbf{V} is nilpotent of class k. Then \mathbf{V} is supernilpotent of class $\leq m^{k-1}$.

Remark (the bound can be attained)

For all $k \geq 1, m \geq 2$, there is a finite nilpotent \mathbf{V} of class k with all f_{i} "multilinear" and of arity $\leq m$ such that \mathbf{V} is supernilpotent of class m^{k-1}.

Colouring the prime sections of the congruence lattice

Definition (Characteristic of a prime section)

Let \mathbf{V} be an expanded group, and let $A \prec B \unlhd \mathbf{V}, \llbracket B, B \rrbracket \leq A$. Then $\operatorname{char}(A, B)$ is the exponent of $\langle B / A,+\rangle$.

Remark

$R:=\left\langle P_{0}(\mathbf{V}) / \operatorname{Ann}(B / A),+, \circ\right\rangle$ is a ring with simple module $M:=B / A$. Hence $\operatorname{char}(A, B)$ is the characteristic of the division ring $\operatorname{End}_{R}(B / A)$.

Characteristic is prime or zero

Let \mathbf{V} be an expanded group, and let $A \prec B \unlhd \mathbf{V}, \llbracket B, B \rrbracket \leq A$. Then char $(A, B) \in \mathbb{P} \cup\{0\}$.

Monochromatic expanded groups

Definition (A generalisation of "prime power order")

Let \mathbf{V} be a solvable expanded group. \mathbf{V} is monochromatic if all prime sections in the ideal lattice have the same colour.

Theorem (EA, 2012)

Let \mathbf{V} be a supernilpotent expanded group whose ideal lattice is of finite height. Then \mathbf{V} is isomorphic to a direct product of finitely many monochromatic expanded groups.

Proof of this decomposition result

Lemma

Let \mathbf{R} be a ring with unit, and let \mathbf{M} be a unitary \mathbf{R}-module such that \mathbf{M} has exactly three submodules; let Q be the submodule different from 0 and M. Then the exponents of the groups $\langle M / Q,+\rangle$ and $\langle Q,+\rangle$ are equal.

Lemma (cf. [Mayr, 2008, Lemma 3])

Let \mathbf{V} be a finite expanded group whose ideal lattice is a three element chain $\{0\}<Q<V$. We assume that the exponents of the groups $\langle Q,+\rangle$ and $\langle V / Q,+\rangle$ are different, and that $[V, V]=Q$ and $[V, Q]=0$. Then \mathbf{V} is not supernilpotent.

Main tool in the proof

The operation of the polynomial ring

$$
\begin{aligned}
M & :=\left\{p \in \operatorname{Pol}_{1} \mathbf{V}: p(V) \subseteq Q,\right. \\
R & p \text { is constant on each } Q \text {-coset }\}, \\
r \star_{w} m(x) & :=\sum_{i=0}^{\text {deg }} \mathbf{i = 0}(r) r_{i} * m(x+i * w) \text { for } m \in M, x \in V .
\end{aligned}
$$

Use of this operation

- For all $m \in \mathbb{N}$, there is $w \in V, f \in M$ such that

$$
(t-1)^{m} \star_{w} f \text { is not constant. }
$$

- From this, we will produce absorbing polynomials of arbitrary arity.

Produce absorbing polynomials of arbitrary arity

Task

Produce absorbing nonconstant polynomial of arity m.

Define a sequence

- Choose $f \in M, w \in W$ such that $(t-1)^{m-1} \star_{w} f$ is not constant.
- Define
- $h^{(1)}\left(x_{1}\right):=f\left(x_{1}\right)-f(0)$.
- $h^{(n)}\left(x_{1}, \ldots, x_{n}\right):=$

$$
\begin{aligned}
& h^{(n-1)}\left(x_{1}+x_{n}, x_{2}, \ldots, x_{n-1}\right)-h^{(n-1)}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+ \\
& h^{(n-1)}\left(0, x_{2}, \ldots, x_{n-1}\right)-h^{(n-1)}\left(x_{n}, x_{2}, \ldots, x_{n-1}\right) .
\end{aligned}
$$

- Then $h^{(n)}\left(x_{1}, w, \ldots, w\right)=$ $\left((t-1)^{n-1} \star_{w} f\right)\left(x_{1}\right)-\left((t-1)^{n-1} \star_{w} f\right)(0)$ for all $x_{1} \in V$.

Aichinger, E. and Ecker, J. (2006).
Every $(k+1)$-affine complete nilpotent group of class k is affine complete.
Internat. J. Algebra Comput., 16(2):259-274.
Berman, J. and Blok, W. J. (1987).
Free spectra of nilpotent varieties.
Algebra Universalis, 24(3):279-282.
R Freese, R. and McKenzie, R. N. (1987).
Commutator Theory for Congruence Modular varieties, volume 125 of London Math. Soc. Lecture Note Ser.
Cambridge University Press.
目 Hobby, D. and McKenzie, R. (1988).
The structure of finite algebras, volume 76 of
Contemporary mathematics.
American Mathematical Society.
围 Kearnes, K. A. (1999).
Congruence modular varieties with small free spectra.

Mayr, P. (2008).
Polynomial clones on squarefree groups. Internat. J. Algebra Comput., 18(4):759-777.

固 McKenzie, R. N., McNulty, G. F., and Taylor, W. F. (1987). Algebras, lattices, varieties, Volume I.
Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, California.

固 Mudrinski, N. (2009).
On Polynomials in Mal'cev Algebras.
PhD thesis, University of Novi Sad.

